首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶矩阵,α1,α2,…,αn是n维列向量,其中αn≠0,若Aα1=α2,Aα2=α3,…,Aαn-1=αn,Aαn=0. 求A的特征值、特征向量.
设A是n阶矩阵,α1,α2,…,αn是n维列向量,其中αn≠0,若Aα1=α2,Aα2=α3,…,Aαn-1=αn,Aαn=0. 求A的特征值、特征向量.
admin
2017-06-14
33
问题
设A是n阶矩阵,α
1
,α
2
,…,α
n
是n维列向量,其中α
n
≠0,若Aα
1
=α
2
,Aα
2
=α
3
,…,Aα
n-1
=α
n
,Aα
n
=0.
求A的特征值、特征向量.
选项
答案
将Aα
1
=α
2
,Aα
2
=α
3
,…,Aα
n
=0用矩阵表示为 A[α
1
,α
2
,…,α
n
]=[α
1
,α
2
,…,α
n-1
,0] [*] 从α
1
,α
2
,…,α
n
线性无关知,矩阵[α
1
,α
2
,…,α
n
]可逆,从而 [*] 得知A的特征值全为0,又因r(A)=r(B)=n-1,所以齐次方程组Ax=0的基础解系仅由 n-(n-1)=1个向量组成,所以A的全部特征向量为kα
n
,k≠0.
解析
转载请注明原文地址:https://kaotiyun.com/show/Mpu4777K
0
考研数学一
相关试题推荐
设对(I)中的任意向量ξ2,ξ3,证明ξ1,ξ2,ξ3线性无关.
已知4阶方阵A=(α1,α2,α3,α4),α1,α2,α3,α4均为4维列向量,其中α2,α3,α4线性无关,α1=2α2-α3.如果β=α1+α2+α3+α4,求线性方程组Ax=β的通解.
已知3阶矩阵A的第一行是(a,6,c),a,b,c不全为零,矩阵(k为常数),且AB=0,求线性方程组Ax=0的通解.
设α1,α2,…,αs为线性方程组Ax=0的一个基础解系,β1=t1α1+t2α2,β2=t1α2+t2α3,…,βs=t1αs+t2α1,t1t2为实常数.试问t1t2满足什么关系时,β1,β2,…,βs,也为Ax=0的一个基础解系.
设α=(1,1,1)T,β=(1,0,k)T,若矩阵αβT相似于,则k=__________.
设向量α1,α2,...,αt是齐次方程组Ax=0的一个基础解系,向量β不是方程组Ax=0的解即Aβ≠0.试证明:向量组β,β+α1,β+α2,…,β+αt线性无关.
设向最组α1,α2,…,αs线性无关,则下列向量组线性相关的是
设f(x),ψ(x),ψ(x)是(-∞,+∞)内的单调增函数,证明:若ψ(x)≤f(x)≤ψ(x),则ψ(ψ(x))≤f(f(x))≤ψ(ψ(x))
设矩阵A,B满足A*BA=2BA-8E,其中E为单位矩阵,A*为A的伴随矩阵,则B=________.
(1998年试题,十二)已知线性方程组(I)的一个基础解系为(b11,b12,…,b1,2n)T,(b21,b22.…,b2,2n)T,…,(bn1,bn2,…,bn,2n)T.试写出线性方程组(Ⅱ)的通解,并说明理由.
随机试题
既不会在“面子”上引起相互关系的紧张,又不会造成理解障碍的谈判信息传递方式的是()
粉末状制剂需要控制粒子的大小,是因为粒子大小与下列哪种因素有关()
男性,55岁,反复不规则胃胀痛3年,胃镜诊断为萎缩性胃窦炎。以下哪项病理改变不但见于萎缩性胃炎,亦见于正常老年人
β肾上腺素受体阻断药可
根据《反不正当竞争法》的规定,下列哪些不属于不正当竞争的行为?
商业银行为房地产开发公司提供贷款属于银行业务中的()。
下列各项中属于民事法律行为的是()。
设数据库表中有一个C型字段NAME,打开表文件后,要把内存变量CC的字符串内容输入到当前记录的NAME字段,应当使用命令:
Inthe1900’s,Americantownspeopleusuallywashedandbrushedtheirteethandcombedtheirhairinthekitchen.Ortheykepta
Nooneshouldstandinjudgmentonanyonebyhislook.
最新回复
(
0
)