首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶矩阵,α1,α2,…,αn是n维列向量,其中αn≠0,若Aα1=α2,Aα2=α3,…,Aαn-1=αn,Aαn=0. 求A的特征值、特征向量.
设A是n阶矩阵,α1,α2,…,αn是n维列向量,其中αn≠0,若Aα1=α2,Aα2=α3,…,Aαn-1=αn,Aαn=0. 求A的特征值、特征向量.
admin
2017-06-14
51
问题
设A是n阶矩阵,α
1
,α
2
,…,α
n
是n维列向量,其中α
n
≠0,若Aα
1
=α
2
,Aα
2
=α
3
,…,Aα
n-1
=α
n
,Aα
n
=0.
求A的特征值、特征向量.
选项
答案
将Aα
1
=α
2
,Aα
2
=α
3
,…,Aα
n
=0用矩阵表示为 A[α
1
,α
2
,…,α
n
]=[α
1
,α
2
,…,α
n-1
,0] [*] 从α
1
,α
2
,…,α
n
线性无关知,矩阵[α
1
,α
2
,…,α
n
]可逆,从而 [*] 得知A的特征值全为0,又因r(A)=r(B)=n-1,所以齐次方程组Ax=0的基础解系仅由 n-(n-1)=1个向量组成,所以A的全部特征向量为kα
n
,k≠0.
解析
转载请注明原文地址:https://kaotiyun.com/show/Mpu4777K
0
考研数学一
相关试题推荐
设a=(1,0,-1)T,矩阵A=aaT,n为正整数,则|aE-An|=___________.
设随机变量X服从正态分布N(μ,σ2)(σ>0),且二次方程y2+4y+X=0无实根的概率为1/2,则μ=___________.
设λ1,λ2是矩阵A的两个不同的特征值,对应的特征向量分别为α1,α2则α1,A(α1+α2)线性无关的充分必要条件是
设已知线性方程组Ax=b存在2个小吲的解.求λ,a;
已知3阶矩阵A的第一行是(a,6,c),a,b,c不全为零,矩阵(k为常数),且AB=0,求线性方程组Ax=0的通解.
设α=(1,1,1)T,β=(1,0,k)T,若矩阵αβT相似于,则k=__________.
设矩阵A,B满足A*BA=2BA-8E,其中E为单位矩阵,A*为A的伴随矩阵,则B=________.
设f(x)在[a,b]上连续,在(a,b)内二阶可导,f(a)=f(b)=0,∫abf(x)dx=0.证明:(Ⅰ)存在ξi∈(a,b),使得f(ξi)=f’’(ξi)(i=1,2);(Ⅱ)存在η∈(a,b),使得f(η)=f’’(η).
k为何值时,线性方程组有唯一解、无解、有无穷多组解?在有解的情况下,求出其全部解.
设A是n阶正定矩阵,E是n阶单位阵,证明A+E的行列式大于1.
随机试题
癌变可能性最小的直肠息肉是
石棉肺的发病机制有以下学说,但最近被多数人认可的是
下列属于对话框中的元素有()。
账户使原始数据转换为初始会计信息,通过账户可以对大量的、复杂的经济业务进行分类核算,从而提供不同性质和内容的会计信息。()
预算外资金是()。
通货膨胀造成的现金流转不平衡可以靠取得短期借款的办法来解决。()
C注册会计师决定采用审计抽样对Y公司20×9年度财务报表进行审计,请代为做出正确的专业判断。注册会计师不论是进行统计抽样还是进行非统计抽样都要对所选取的样本实施审计程序,下列对实施的审计程序表达正确的有()。
下列关于μC/OS—II操作系统的描述中,错误的是()。
下列关于WindowsServer2003系统下www服务器的描述中,正确的是()。
Onesummernight,onmywayhomefromworkIdecidedtoseeamovie.Iknewthetheatrewouldbeair-conditionedandIcouldn’t
最新回复
(
0
)