首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶矩阵,α1,α2,…,αn是n维列向量,其中αn≠0,若Aα1=α2,Aα2=α3,…,Aαn-1=αn,Aαn=0. 求A的特征值、特征向量.
设A是n阶矩阵,α1,α2,…,αn是n维列向量,其中αn≠0,若Aα1=α2,Aα2=α3,…,Aαn-1=αn,Aαn=0. 求A的特征值、特征向量.
admin
2017-06-14
48
问题
设A是n阶矩阵,α
1
,α
2
,…,α
n
是n维列向量,其中α
n
≠0,若Aα
1
=α
2
,Aα
2
=α
3
,…,Aα
n-1
=α
n
,Aα
n
=0.
求A的特征值、特征向量.
选项
答案
将Aα
1
=α
2
,Aα
2
=α
3
,…,Aα
n
=0用矩阵表示为 A[α
1
,α
2
,…,α
n
]=[α
1
,α
2
,…,α
n-1
,0] [*] 从α
1
,α
2
,…,α
n
线性无关知,矩阵[α
1
,α
2
,…,α
n
]可逆,从而 [*] 得知A的特征值全为0,又因r(A)=r(B)=n-1,所以齐次方程组Ax=0的基础解系仅由 n-(n-1)=1个向量组成,所以A的全部特征向量为kα
n
,k≠0.
解析
转载请注明原文地址:https://kaotiyun.com/show/Mpu4777K
0
考研数学一
相关试题推荐
设a=(1,0,-1)T,矩阵A=aaT,n为正整数,则|aE-An|=___________.
设向量α1,α2,...,αt是齐次方程组Ax=0的一个基础解系,向量β不是方程组Ax=0的解即Aβ≠0.试证明:向量组β,β+α1,β+α2,…,β+αt线性无关.
设随机变量X服从正态分布N(μ,σ2)(σ>0),且二次方程y2+4y+X=0无实根的概率为1/2,则μ=___________.
设A,B为满足AB=0的任意两个非零矩阵,则必有
设对(I)中的任意向量ξ2,ξ3,证明ξ1,ξ2,ξ3线性无关.
设A是n阶实对称矩阵,P是n阶可逆矩阵.已知n维列向量口是A的属于特征值λ的特征向量,则矩阵(P-1AP)T属于特征值A的特征向量是
设A为n阶实对称矩阵,秩(A)=n,Aij是A=(aij)nxm中元素aij(i,j=1,2,…,n)的代数余子式,二次型f(x1,x2…,xn)=(I)记X=(x1,x2,…,xn)T,把f(x1,x2,…,xn)写成矩阵形式,并证明二次型f(x)
设a1,a2,…,at为AX=0的一个基础解系,β不是AX=0的解,证明:β,β+a1,β+a2,…,β+at线性无关.
随机试题
简述产生冲突的原因。
手术治疗痔的适应证是什么
动物上、下运动神经元的损伤以致肌肉与脑之间的传导中断,或运动中枢障碍所导致的骨骼肌随意减弱或丧失现象,称为()。
李某是某国有公司会计,与其朋友张某(个体经营者)想合伙做烟草买卖,由于没有资金,张某唆使李某先挪用一下单位的公款。数日后,李某利用职务之便挪用了公款30万元。二人在未获得烟草专卖经营许可证的情况下,将30万元用于香烟买卖活动,案发后,李某携带这笔公款中的1
商业银行在进行风险与控制自我评估时,评估范围覆盖所有业务品种,体现了该工作的()原则。
下列各项关于经营风险与财务风险的搭配方式的表述中,正确的有()。
北京史家胡同小学开展“小博士”工程,让学生利用课余时间,少则两周,多则三四个月,自己研究探索一个专题,或完成一部童话作品。此活动的开展体现了()的教学原则。
刑法中的因果关系的特征是()
WhatwasSteveVaught’spurposeofhisepicjourneyatfirst?
Drugscanbedividedintothreemaingroups:thosethatapersoncanbuywithoutaprescription,thosethatapersonneedsadoc
最新回复
(
0
)