首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知3阶矩阵A的第一行是(a,6,c),a,b,c不全为零,矩阵(k为常数),且AB=0,求线性方程组Ax=0的通解.
已知3阶矩阵A的第一行是(a,6,c),a,b,c不全为零,矩阵(k为常数),且AB=0,求线性方程组Ax=0的通解.
admin
2013-04-04
77
问题
已知3阶矩阵A的第一行是(a,6,c),a,b,c不全为零,矩阵
(k为常数),且AB=0,求线性方程组Ax=0的通解.
选项
答案
由AB=0知r(A)+r(B)≤3,又A≠0,B≠0,故 1≤r(A)≤2, 1≤r(B)≤2. (1)若r(A)=2,必有r(B)=1,此时k=9. 方程组Ax=0的通解是t(1,2,3)
T
,其中t为任意实数. (2)若r(A)=1,则Ax=0的同解方程组是ax
1
+bx
2
+cx
3
=0且满足 如果c≠0,方程组的通解是t
1
(c,0,-a)
T
+t
2
(0,c,-b)
T
,其中t
1
,t
2
为任意实数; 如果c=0,方程组的通解是t
1
(1,2,0)
T
+t
2
(0,0,1)
T
,其中t
1
,t
2
为任意实数. (1)如果k≠9,则秩r(B)=2.由AB=0知r(A)+r(B)≤3.因此,秩r(A)=1, 所以Ax=0的通解是t
1
(1,2,3)
T
+t
2
(3,6,k)
T
,其中t
1
,t
2
为任意实数. (2)如果k=9,则秩r(B)=1,那么,秩f(A)=1或2. 若r(A)=2,则Ax=0的通解是t(1,2,3)
T
,其中t为任意实数. 若r(A)=1,对ax
1
+bx
2
+cx
3
=0,设c≠0,则方程组的通解是t
1
(c,0,-a)
T
+t
2
(0,c,-b)
T
.
解析
转载请注明原文地址:https://kaotiyun.com/show/4H54777K
0
考研数学一
相关试题推荐
(15年)设函数f(x)在(一∞,+∞)内连续,其2阶导函数f"(x)的图形如右图所示,则曲线y=f(x)的拐点个数为
(2007年试题,一)二元函数f(x,y)在点(0,0)处可微的一个充分条件是().
已知f(x)=设F(x)=∫1xf(t)dt.(0≤x≤2)则F(x)为
微分方程y"一λ2y=eλx+e一λx(λ>0)的特解形式为
设f(x,y)与ψ(x,y)均为可微函数,且ψ’(x,y)≠0.已知(x0,y0)是f(x,y)在约束条件ψ(x,y)=0下的一个极值点,下列选项正确的是
(04年)设函数f(x)连续。且f’(0)>0,则存在δ>0,使得
若f(x)=一f(一x),在(0,+∞)内,f’(x)>0,f"(x)>0,则f(x)在(一∞,0)内
设A是任一n(n≥3)阶方阵,A*是其伴随矩阵,又k为常数,且k≠0,±1,则必有(kA)*=()
[2013年]当x→0时,1一cosx·cos2x·cos3x与axn为等价无穷小,求n与a的值.
设二次型f(x1,x2,x3)=x12-x22+2ax1x3+4x2x3的负惯性指数为1,求常数a的取值范围.
随机试题
急性血源性骨髓炎的早期特点是
某热电公司的新建项目工程,占地面积6.5万平方米,建筑面积3.7万平方米,采用中温中压锅炉,单机容量30万千瓦,主要设备包括:循环流化床锅炉、抽凝式汽轮发电机组、钠离子交换器、湿式脱硫除尘器等。主要能源来自于燃煤,同时使用大量的水进行冷却。配套工程有除灰渣
关于国外运费下列表述正确的等式是( )。
下列各项资料中,应视同会计档案保管的有()。
下列关于振动、噪声测量的叙述中,正确的是()。
甲公司是一家体育用品生产企业。在进行行业分析时,该企业可用以区分战略群组的变量包括()。
导游人员的知识水平包括()
下面不属于使用视图的优点的是
CanLoudMusicCauseHearingImpairment(损伤)?Haveyouevergonetoaconcertandrealizedthatyourseatswererightnextto
Therateatwhichmanhasbeenstoringupusefulknowledgeabouthimselfandtheuniversehasbeenspiralingupwardfor10,000y
最新回复
(
0
)