首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知3阶矩阵A的第一行是(a,6,c),a,b,c不全为零,矩阵(k为常数),且AB=0,求线性方程组Ax=0的通解.
已知3阶矩阵A的第一行是(a,6,c),a,b,c不全为零,矩阵(k为常数),且AB=0,求线性方程组Ax=0的通解.
admin
2013-04-04
73
问题
已知3阶矩阵A的第一行是(a,6,c),a,b,c不全为零,矩阵
(k为常数),且AB=0,求线性方程组Ax=0的通解.
选项
答案
由AB=0知r(A)+r(B)≤3,又A≠0,B≠0,故 1≤r(A)≤2, 1≤r(B)≤2. (1)若r(A)=2,必有r(B)=1,此时k=9. 方程组Ax=0的通解是t(1,2,3)
T
,其中t为任意实数. (2)若r(A)=1,则Ax=0的同解方程组是ax
1
+bx
2
+cx
3
=0且满足 如果c≠0,方程组的通解是t
1
(c,0,-a)
T
+t
2
(0,c,-b)
T
,其中t
1
,t
2
为任意实数; 如果c=0,方程组的通解是t
1
(1,2,0)
T
+t
2
(0,0,1)
T
,其中t
1
,t
2
为任意实数. (1)如果k≠9,则秩r(B)=2.由AB=0知r(A)+r(B)≤3.因此,秩r(A)=1, 所以Ax=0的通解是t
1
(1,2,3)
T
+t
2
(3,6,k)
T
,其中t
1
,t
2
为任意实数. (2)如果k=9,则秩r(B)=1,那么,秩f(A)=1或2. 若r(A)=2,则Ax=0的通解是t(1,2,3)
T
,其中t为任意实数. 若r(A)=1,对ax
1
+bx
2
+cx
3
=0,设c≠0,则方程组的通解是t
1
(c,0,-a)
T
+t
2
(0,c,-b)
T
.
解析
转载请注明原文地址:https://kaotiyun.com/show/4H54777K
0
考研数学一
相关试题推荐
A、 B、 C、 D、 D
(06年)设函数g(x)可微,h(x)=ex+g(x),h’(1)=1,g’(1)=2,则g(1)等于
(16年)设函数f(x)在(一∞,+∞)内连续,其导函数的图形如图所示,则
(1998年)设周期函数f(χ)在(-∞,+∞)内可导,周期为4,又=-1,则曲线y=f(χ)在点(5,f(5))处的切线斜率为
设(Ⅰ)求满足Aξ2=ξ1,A2ξ2=ξ1的所有向量ξ2,ξ3;(Ⅱ)对(Ⅰ)中的任意向量ξ2,ξ3,证明ξ1,ξ2,ξ3线性无关.
[2017年]设A为3阶矩阵,P=[α1,α2,α3]为可逆矩阵,且P-1AP=,则A(α1+α2+α3)=().
设某次考试的考生成绩服从正态分布,从中随机抽取36位考生的成绩,算得平均成绩为66.5分,标准差为15分,问在显著性水平α=0.05下,是否可以认为这次考试全体考生的平均成绩为70分?并给出检验过程.
X与Y的联合概率分布
自动生产线在调整后出现废品的概率为P,当在生产过程中出现废品时,立即重新进行调整,求在两次调整之间生产的合格品数X的分布列及其数学期望.
随机试题
成就需要理论的主要内容。
Pleasebecarefulwhenyouaredrinkingcoffeeincaseyou______thenewcarpet.
对重大或敏感性强的问题在设置调查项目时应采用是非提问,不宜采用多项选择。()
根据《房产测量规范》的规定,下列项目中计算一半建筑面积的是()。
下列股东大会的事项中,适用于累积投票制的是()。
语言学习的随机渗透
请从所给的四个选项中,选出最符合下边四个图形一致性规律的选项()
关于人体实验,1996年国际会议上通过的《临床实验指南》中指出:“知情同意是一个过程,个人通过这个过程在了解了决定参与实验所有相关方面之后,自愿表达他或她参加该项实验的意愿。”美国伦理顾问委员会也特别指出:“必须区分同意的文件和同意的过程,不能允许文件本身
“五谷杂粮”中的“五谷”不包括以下哪项?()
下面程序运行时,若输入“VisualBasicProgramming”,则在窗体上输出的是()。PrivateSubCommand1_Click()DimNum(25)AsInteger,ChrlAsStrin
最新回复
(
0
)