首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[1,+∞)内可导,f’(x)<0且f(k)一∫1nf(x)dx.证明:{an}收敛且0≤≤f(1).
设f(x)在[1,+∞)内可导,f’(x)<0且f(k)一∫1nf(x)dx.证明:{an}收敛且0≤≤f(1).
admin
2019-05-14
69
问题
设f(x)在[1,+∞)内可导,f’(x)<0且
f(k)一∫
1
n
f(x)dx.证明:{a
n
}收敛且0≤
≤f(1).
选项
答案
因为f’(x)<0,所以f(x)单调减少. 又因为a
n+1
一a
n
=f(n+1)一∫
n
n+1
f(x)dx=f(n+1)一f(ξ)≤0(ξ∈[n,n+1]), 所以{a
n
}单调减少. 因为a
n
=[*]∫
k
k+1
[f(k)—f(x)]dx+f(n),而∫
k
k+1
[f(k)—f(x)]dx≥0(k=1,2,…,n一1) 且[*]f(x)=a>0,所以存在X>0,当x>X时,f(x)>0. 由f(x)单调递减得f(x)>0(x∈[1,+∞)),故a
n
≥f(n)>0,所以[*]存在. 由a
n
=f(1)+[f(2)一∫
1
2
f(x)dx]+…+[f(n)~∫
n—1
n
f(x)dx], 由a
n
=f(1)+[f(2)一∫
1
2
f(x)dx]+…+[f(n)~∫
n—1
n
f(x)dx], 而f(k)一∫
k—1
k
f(x)dx≤0(k=2,3,…,n),所以a
n
≤f(1),从而0≤[*]≤f(1).
解析
转载请注明原文地址:https://kaotiyun.com/show/Mq04777K
0
考研数学一
相关试题推荐
求曲线在点(1,一2,1)处的切线及法平面方程。
求曲线r=3cosθ,r=1+cosθ所围成的图形含于曲线r=3cosθ内部的公共部分的面积。
函数y=f(x)在(0,+∞)内有界且可导,则()
设f(x)在[0,1]上连续,f(0)=0,∫01f(x)dx=0。证明:存在一点ξ∈(0,1),使得∫0ξf(x)dx=ξf(ξ)。
设函数y=y(x)由参数方程确定,求函数y=y(x)的极值和曲线y=y(x)的凹凸区间及拐点。
设随机变量X服从二项分布B(n,p),随机变量Y为求:(Ⅰ)Y的概率分布;(Ⅱ)Y的期望EY与方差DY.
求下列区域Ω的体积:Ω:由曲面z=y2(y≥0),z=4y2(y≥0),z=x,z=2x,z=4所围成.
设A为n阶矩阵,A的各行元素之和为0且r(A)=n-1,则方程组AX=0的通解为_________.
设集合A={(x,y)|x+y-1=0},集合B={(x,y)|x—y+1=0},求A∩B.
在集合{1,2,3}中取数两次,每次任取一个数,作不放回抽样,以X与Y分别表示第一次和第二次取到的数求(X,Y)联合概率分布;
随机试题
接触抑制(contactinhibition)
恰好有两位数字相同的三位数共有多少个?()
对设备稳定性进行的检测是
移动加权平均法和一次加权平均法的不同之处在于移动平均法在每次收入存货时都要重新计算加权平均单价。()
下列关于基金的分类标准,描述错误的是()。
下列发文除()外,都应加盖发文机关的印章。
有位作家说,要想使自己生活的扁舟轻驶,务必要让它______的仅限于必不可少之物,不然轻则______无以进,重则可能压沉自己的生活之舟。道理很明白,什么都舍不得撒手,往往导致什么都不得不舍弃。填入横线部分最恰当的一项是()。
建立什么样的经济体制,是建设中国特色社会主义的一个重大问题。改革开放后很长一段时期内,我国经济体制改革的核心问题是
设int*p2=&x,*p1=a;p2=*b,则a和b的类型分别是______。
HouseandHome"House"and"home"bothrefertoplaceswherepeoplelive.
最新回复
(
0
)