首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(02年)设函数f(χ),g(χ)在[a,b]上连续,且g(χ)>0.利用闭区间上连续函数性质,证明存在一点ξ∈[a,b],使 ∫abf(χ)g(χ)dχ=f(ξ)∫abg(χ)dχ.
(02年)设函数f(χ),g(χ)在[a,b]上连续,且g(χ)>0.利用闭区间上连续函数性质,证明存在一点ξ∈[a,b],使 ∫abf(χ)g(χ)dχ=f(ξ)∫abg(χ)dχ.
admin
2021-01-25
65
问题
(02年)设函数f(χ),g(χ)在[a,b]上连续,且g(χ)>0.利用闭区间上连续函数性质,证明存在一点ξ∈[a,b],使
∫
a
b
f(χ)g(χ)dχ=f(ξ)∫
a
b
g(χ)dχ.
选项
答案
因为f(χ),g(χ)在[a,b]上连续,且g(χ)>0,由最值定理,知f(χ)在[a,b]上有最大值M和最小值m,即 m≤f(χ)≤M 故mg(χ)≤f(χ)g(χ)≤Mg(χ) ∫
a
b
mg(χ)dχ≤∫
a
b
(χ)g(χ)dχ≤∫
a
b
Mg(χ)dχ [*] 由介值定理知,存在ξ∈[a,b],使 [*] 即∫
a
b
(χ)g(χ)dχ=f(ξ)∫
a
b
g(χ)dχ
解析
转载请注明原文地址:https://kaotiyun.com/show/Mux4777K
0
考研数学三
相关试题推荐
是二维随机变量,X的边缘概率密度为在给定X=χ(0<χ<1)的条件下Y的条件概率密度为(Ⅰ)求(X,Y)的概率密度f(χ,y);(Ⅱ)求Y的边缘概率密度fY(χ);(Ⅲ)求P{X>2Y}.
(97年)设函数f(t)在[0,+∞)上连续,且满足方程求f(t).
[2005年]设X1,X2,…,Xn(n>2)为来自总体N(0,σ2)的简单随机样本,其样本均值为,记Yi=Xi-(i=1,2,…,n).求若c1(Y1+Yn)2是σ2的无偏估计量,求常数c.
已知矩阵A=和对角矩阵相似,则a=________。
已知反常积分=______.
连续函数f(x)满足f(x)=3∫0xf(x—t)dt+2,则f(x)=__________.
对随机变量X,Y,Z,已知EX=EY=1,EZ=-1,DX=DY=1,DZ=4,ρ(X,Y)=0,ρ(X,Z)=,ρ(Y,Z)=-.(ρ为相关系数)则E(X+Y+Z)=_______,D(X+Y+Z)=_______,cov(2X+Y,3Z+X)=____
f(x1,x2,x3,x4)=XTAX的正惯性指数是2,且A2-2A=0,该二次型的规范形为______.
设则有()
(2005年)设f(x),g(x)在[0,1]上的导数连续,且f(0)=0,f’(x)≥0,g’(x)≥0。证明:对任何a∈[0,1],有∫0ag(x)f’(x)dx+∫01f(x)g’(x)dx≥f(a)g(1)。
随机试题
硫喷妥钠的禁忌证是
上唇周围和鼻部疖的危险可引起
第三代头孢菌素(头孢噻肟)的特点是
有关新生儿溶血症的论述,不正确的是
非法经营罪的犯罪客观方面包括( )。
沥青路面试验路铺筑属于()阶段。
采用股利增长模型估计普通股成本时,对于模型中平均增长率的确定,主要方法有()。
Z注册会计师验证被审计单位应付账款是否真实存在,可通过( )程序测试。函证应付账款时,一般选择金额较大的债权人,以及那些金额不大、甚至为零的债权人作为函证的对象,其原因是( )。
唐代陆羽被奉为______,他最著名的专著是______。
设=∫-∞ate′dt,则a=________.
最新回复
(
0
)