首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)=F(x)=∫-1xf(t)dt,则F(x)在x=0处 ( )
设f(x)=F(x)=∫-1xf(t)dt,则F(x)在x=0处 ( )
admin
2020-02-28
63
问题
设f(x)=
F(x)=∫
-1
x
f(t)dt,则F(x)在x=0处 ( )
选项
A、极限不存在.
B、极限存在但不连续.
C、连续但不可导.
D、可导.
答案
C
解析
法一 写出F(x)的表达式进行讨论.由f(x)的表达式知,
当x<0时,F(x)=∫
-1
x
f(t)dt=∫
-1
x
f(-t)dt=
当x≥0时,F(x)=∫
-1
x
f(t)dt=∫
-1
0
f(t)dt+∫
0
x
f(t)dt
=∫
-1
0
(-t)dt+∫
0
x
e
t
dt+=
|
-1
0
+e
t
|
0
x
=
即
由上可知F(x)在x=0处连续,在看是否可导.
所以选(C).
法二 有下述定理:
设f(x)在[a,b]上除点c∈(a,b)外连续,而点x=c是f(x)的跳跃间断点.又设F(x)=∫
x
0
x
f(t)dt,x
0
∈(a,b).
则:①F(x)在[a,b]上必连续;
②当x∈[a,b]但x≠c时,F
’
(x)=f(x);
③F
’
(c)必不存在,并且F
’
﹢
(c)=f(c
﹢
﹢),F
’
-
(c)=f(c
-
).
在做选择题时可套用此结论.
由此定理可知应选(C).
转载请注明原文地址:https://kaotiyun.com/show/MxA4777K
0
考研数学二
相关试题推荐
设f(x)在(一∞,+∞)内连续,以T为周期,证明:
已知二次型f(x1,x2,x3)=(1一a)x12+(1一a)x22+2x32+2(1+a)x1x2的秩为2。求a的值;
设xOy平面上n个不同的点为Mi(xi,yi),i=1,2,…,n(n≥3),记则M1,M2,…,Mn共线的充要条件是r(A)=()
设f(x)在x=0的邻域内有定义,f(0)=1,且,则f(x)在x=0处().
设A=E一2ξξT,其中ξ=(x1,x2,…,xn)T,且有ξTξ=1。则①A是对称矩阵;②A2是单位矩阵;③A是正交矩阵;④A是可逆矩阵。上述结论中,正确的个数是()
考虑二元函数的下面4条性质:①f(x,y)在点(x0,y0)处连续;②f(x,y)在点(x0,y0)处的两个偏导数连续;③f(x,y)在点(x0,y0)处可微;④f(x,y)在点(x0,y0)处两个偏导数存在若用“P≥Q”表示可由性质P推出性质Q
设线性方程组AX=β有3个不同的解γ1,γ2,γ3,r(A)=n-2,n是未知数个数,则()正确.
设A是秩为n一1的n阶矩阵,α1,α2是方程组Ax=0的两个不同的解向量,则Ax=0的通解必定是()
设f(u,v)一阶连续可偏导,f(tx,ty)=t3f(x,y),且f’x(1,2)=1,f’y(1,2)=4,则f(1,2)=_______.
极坐标系下的累次积分f(rcosθ,rsinθ)rdr.
随机试题
子宫峡部相当于
能引起瘫痪的毒物有
A.水肿的特点先从足部开始逐渐蔓延至全身,常伴消瘦、体重减轻B.腹腔内先出现水肿C.水肿先出现在身体下垂部位,并伴有体循环淤血的表现D.水肿首先出现在晨起眼睑和颜面水肿E.水肿好发于下肢胫骨前区域,也可出现在眼眶周围
A.钙B.镁C.磷D.铁E.锌具有抗氧化、抗衰老和抗癌作用的微量元素是
下列关于某省人民政府规章可以设定行政许可的说法不正确的是:()
年数总和法是一种折旧率不变、折旧基数递减的加速折旧方法。()
换热设备的热传递的基本方式有()。
鲜脐橙()
设数列{an)的首项a1=a≠n=1,2,3,…。证明:
Whatdoesthemansayhewilltrytodo?
最新回复
(
0
)