首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A=E一2ξξT,其中ξ=(x1,x2,…,xn)T,且有ξTξ=1。则 ①A是对称矩阵; ②A2是单位矩阵; ③A是正交矩阵; ④A是可逆矩阵。 上述结论中,正确的个数是( )
设A=E一2ξξT,其中ξ=(x1,x2,…,xn)T,且有ξTξ=1。则 ①A是对称矩阵; ②A2是单位矩阵; ③A是正交矩阵; ④A是可逆矩阵。 上述结论中,正确的个数是( )
admin
2019-03-14
44
问题
设A=E一2ξξ
T
,其中ξ=(x
1
,x
2
,…,x
n
)
T
,且有ξ
T
ξ=1。则
①A是对称矩阵;
②A
2
是单位矩阵;
③A是正交矩阵;
④A是可逆矩阵。
上述结论中,正确的个数是( )
选项
A、1。
B、2。
C、3。
D、4。
答案
D
解析
A
T
=(E一2ξξ
T
)
T
=E
T
一(2ξξ
T
)
T
=E一2ξξ
T
=A,①成立。
A
2
=(E一2ξξ
T
)(E一2ξξ
T
)=E一4ξξ
T
+4ξξ
T
ξξ
T
=E一4ξξ
T
+4ξ(ξ
T
ξ)ξ
T
=E,②成立。
由①、②,得A
2
=AA
T
=E,故A是正交矩阵,③成立。
由③知正交矩阵是可逆矩阵,且A
-1
=A
T
,④成立。
故应选D。
转载请注明原文地址:https://kaotiyun.com/show/fOj4777K
0
考研数学二
相关试题推荐
有两根长各为l,质量各为M的均匀细杆,位于同一条直线上,相距为a,求两杆间的引力.
设f(χ)在[a,b]上连续,在(a,b)内可导,且∫abf(χ)dχ=f(b).求证:在(a,b)内至少存在一点ξ,使f′(ξ)=0.
求函数的单调区间和极值,并求该函数图形的渐近线。
已知函数f(x)连续,且则f(0)=____________。
设f(x)在[a,b]上有二阶连续导数,证明
微分方程(y+x3)dx一2xdy=0满足y|x=1=的特解为________.
设f(x)在(一∞,+∞)内有定义,且对任意x∈(一∞,+∞),y∈(一∞,+∞),成立f(x+y)=f(x)ey+f(y)ex,且f’(0)存在等于a,a≠0,则f(x)=________.
已知y1*=xex+e2x,y2*=xex+e-x),y3*=xex+e2x-e-x是某二阶线性常系数非齐次方程的三个特解.试求其通解及该微分方程.
1一a+a2一a3+a4一a5.先把第2、3、4、5行都加到第1行,再按第1行展开,得D5=1一aD4,一般地有Dn=1一aDn一1(n≥2),并应用此递推公式.
函数的定义域为_____________.
随机试题
根据我国法律规定,申请人向有关法院申请执行香港地区作出的仲裁裁决时,裁决书需是()
甲状腺巨细胞型未分化癌的病理组织学特点是
肌力训练的适应证是
孕妇,妊娠35周,有不规律子宫收缩,胎膜未破,宫口未开,胎心142次/分,估计胎儿大小为2200g。目前的处理原则是
家庭的半自动洗衣机,经过多次维修也无法使用,准备购买全自动的新洗衣机,这一措施属于对( )。
著作权中的财产权不包括()。
《春秋》是我国一部经典著作,下列关于这部著作的说法正确的一项是()。
近日,火星车在加勒陨坑拍摄的图像发现,火星陨坑内的远古土壤存在着类似地球土壤裂纹剖面的土壤样本,通常这样的土壤存在于南极干燥谷和智利阿塔卡马沙漠,这暗示着远古时期火星可能存在生命。以下哪项如果为真,最能支持上述结论?
一家食品店从周一到周日,每天都有3种商品特价销售。可供特价销售的商品包括3种蔬菜:G、H和J;3种水果:K、L和O;3种饮料:X、Y和Z。必须根据以下条件安排特价商品:(1)每天至少有一种蔬菜特价销售,每天至少有一种水果特价销售(2)无论在
有以下程序:#include<iostream>usingnamespacestd;#definePI3.14classPoint{private:intx,y
最新回复
(
0
)