首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(χ),g(χ)在[a,+∞)上二阶可导,且满足条件f(a)=g(a),f′(a)=g′(a),f〞(χ)>g〞(χ)(χ>a).证明:当χ>a时,f(χ)>g(χ).
设函数f(χ),g(χ)在[a,+∞)上二阶可导,且满足条件f(a)=g(a),f′(a)=g′(a),f〞(χ)>g〞(χ)(χ>a).证明:当χ>a时,f(χ)>g(χ).
admin
2019-08-23
63
问题
设函数f(χ),g(χ)在[a,+∞)上二阶可导,且满足条件f(a)=g(a),f′(a)=g′(a),f〞(χ)>g〞(χ)(χ>a).证明:当χ>a时,f(χ)>g(χ).
选项
答案
令φ(χ)=f(χ)-g(χ),显然φ(a)=φ′(a)=0,φ〞(χ)>0(χ>a). 由[*]得φ′(χ)>0(χ>a); 再由[*]得φ(χ)>0(χ>a),即f(χ)>g(χ).
解析
转载请注明原文地址:https://kaotiyun.com/show/MzA4777K
0
考研数学二
相关试题推荐
设z=f[χ+φ(χ-y),y],其中f二阶连续可偏导,φ二阶可导,求.
设函数f(x)在[0,+∞)上可导,f(0)=0,且其反函数为g(x).若g(t)dt=x2ex,求f(x).
设有矩阵Am×n,Bn×m,且Em+AB可逆.设其中利用上题证明P可逆,并求P-1.
设一质点在单位时间内由点A从静止开始做直线运动至点B停止,A,B两点间距离为1,证明:该质点在(0,1)内总有某一时刻的加速度的绝对值不小于4.
证明线性方程组(Ⅰ)有解的充分必要条件是方程组(Ⅲ)是同解方程组.
设f(x)在[0,1]上连续,在(0,1)内可导,f(0)=0,,f(1)=0.证明:对任意的k∈(-∞,+∞),存在ξ∈(0,η),使得f’(ξ)-k[f(ξ)-ξ]=1.
设f(x)在[0,1]上连续,在(0,1)内可导,f(0)=0,,f(1)=0.证明:存在,使得f(η)=η;
设f(x)在区间[一a,a](a>0)上具有二阶连续导数,f(0)=0.(1)写出f(x)的带拉格朗日余项的一阶麦克劳林公式;(2)证明:在[一a,a]上存在η,使a3f"(η)=3∫一aaf(x)dx.
随机试题
随着新税收改革法令的通过,低收入纳税人每年将平均减少100元到300元的财税负担。所以,税收改革有益于低收入纳税人。以下哪项如果为真,最严重地动摇了上述结论?
下列划横线的句子翻译错误的是【】
某实验室收到一个血标本,经离心后上层血清呈云雾状浑浊,其原因是
对病毒性肝炎的临床分型最有意义的依据是
炎性充血主要是指
作为债券结算的主要结算方式,全额结算的劣势是()。
下列关于合同成立条件的错误表述是()。
一个男人想结婚,但又怕结婚后要承担相应的责任义务。这时他面临的心理冲突是()。
阅读下文。回答106—110题。德国地理学家李希霍芬,首次提出“丝绸之路”这个概念,因为他通过考察,认为当时路上运输的主要货物是丝绸。尽管西域考古挖掘出一些丝织品,但这只说明“丝绸之路”确实运送过丝绸,而不能说明运送的主要物品是丝绸。今天“
《共产党宣言》发表以来160年的实践,特别是中国共产党人创造性地领导中国革命、建设和改革的成功实践告诉我们,马克思主义之所以能够成功的条件是
最新回复
(
0
)