首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(χ),g(χ)在[a,+∞)上二阶可导,且满足条件f(a)=g(a),f′(a)=g′(a),f〞(χ)>g〞(χ)(χ>a).证明:当χ>a时,f(χ)>g(χ).
设函数f(χ),g(χ)在[a,+∞)上二阶可导,且满足条件f(a)=g(a),f′(a)=g′(a),f〞(χ)>g〞(χ)(χ>a).证明:当χ>a时,f(χ)>g(χ).
admin
2019-08-23
97
问题
设函数f(χ),g(χ)在[a,+∞)上二阶可导,且满足条件f(a)=g(a),f′(a)=g′(a),f〞(χ)>g〞(χ)(χ>a).证明:当χ>a时,f(χ)>g(χ).
选项
答案
令φ(χ)=f(χ)-g(χ),显然φ(a)=φ′(a)=0,φ〞(χ)>0(χ>a). 由[*]得φ′(χ)>0(χ>a); 再由[*]得φ(χ)>0(χ>a),即f(χ)>g(χ).
解析
转载请注明原文地址:https://kaotiyun.com/show/MzA4777K
0
考研数学二
相关试题推荐
已知η是Ax=b的一个特解,ξ1,ξ2,…,ξn-r是对应齐次方程组Ax=0的基础解系.证明:η,η+ξ1,η+ξ2,…,η+ξn-r,是Ax=b的n-r+1个线性无关解向量;
设f(χ)在(0,1)内有定义,且eχf(χ)与e-f(χ)在(0,1)内都是单调增函数,证明:f(χ)在(0,1)内连续.
设f(x)在[0,1]上连续,在(0,1)内可导,f(0)=0,,f(1)=0.证明:对任意的k∈(-∞,+∞),存在ξ∈(0,η),使得f’(ξ)-k[f(ξ)-ξ]=1.
设f(x)在[0,1]上连续,在(0,1)内可导,f(0)=0,,f(1)=0.证明:存在,使得f(η)=η;
设f(x)在[a,b]上连续,在(a,b)上可导,且f(A)=f(B)=1,证明:必存在ξ,η∈(a,b),使得eη-ξ[f(η)+f’(η)]=1。
设f(x)在[-a,a](a>0)上有四阶连续的导数,存在.证明:存在ξ1,ξ2∈[-a,a],使得
设f(x)在区间[一a,a](a>0)上具有二阶连续导数,f(0)=0.(1)写出f(x)的带拉格朗日余项的一阶麦克劳林公式;(2)证明:在[一a,a]上存在η,使a3f"(η)=3∫一aaf(x)dx.
随机试题
入学式の後は、受講科目の選択や申請、最終登録に関する教務________が始まった。
经济全球化
Thisisademandingtask—butIseeitastherealchallengeweneedto______.
以下属于中诊断学四诊内容的是
凝汽器组装完毕后,汽侧应进行()。
某公司2008年度期初资产为1800万元,期末资产为2000万元,净利润为140万元,则资产净利率为()。
某公司于2017年年初购入设备一台,设备价款1500万元,预计使用3年,预计期末无残值,采用直线法按3年计提折旧(均符合税法规定)。该设备于购入当日投入使用。预计能使公司未来3年的销售收入分别增长1200万元、2000万元和1500万元,经营成本分别增
假设下图中的字母代表某种变换规则,请观察后选择填入问号处最合适的一项。()
阅读下面的材料,按要求作文。“抢红包”是近年来流行的话题之一。各类“抢红包”活动此起彼伏,好不热闹。与此同时,有关“抢红包”的争议也越来越大。有人认为这是高科技时代的民俗文化,值得发扬;有人认为把亲情友情晾在一边,只认钱,坏了社会风气;也有人认为玩点
下列不属于我国对中小学生身份的法律定位的是()。
最新回复
(
0
)