首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知η是Ax=b的一个特解,ξ1,ξ2,…,ξn-r是对应齐次方程组Ax=0的基础解系.证明: η,η+ξ1,η+ξ2,…,η+ξn-r,是Ax=b的n-r+1个线性无关解向量;
已知η是Ax=b的一个特解,ξ1,ξ2,…,ξn-r是对应齐次方程组Ax=0的基础解系.证明: η,η+ξ1,η+ξ2,…,η+ξn-r,是Ax=b的n-r+1个线性无关解向量;
admin
2018-11-11
69
问题
已知η是Ax=b的一个特解,ξ
1
,ξ
2
,…,ξ
n-r
是对应齐次方程组Ax=0的基础解系.证明:
η,η+ξ
1
,η+ξ
2
,…,η+ξ
n-r
,是Ax=b的n-r+1个线性无关解向量;
选项
答案
A(η+ξ
i
)=Aη=b,i=0,1,2,…,n一r(其中ξ
0
=0),故η+ξ
i
,i=0,1,2,…,n一r均 是Ax=b的解向量. 设存在数k
0
,k
1
,k
2
,…,k
n-r
使得 k
0
η+k
1
(η+ξ
1
)+k
2
(η+ξ
2
)+…+k
n-r
(η+ξ
n-r
)=0. (*) (*)式两端左边乘A,得 k
0
Aη+k
1
A(η+ξ
1
)+k
2
A(η+ξ
2
)+…+k
n-r
A(η+ξ
n-r
)=0, 整理得(k
0
+k
1
+…+k
n-r
)b=0,其中b≠0.故 k
0
+k
1
+…+k
n-r
=0, (**) 代入(*)式,得 k
1
ξ
1
+k
2
ξ
2
+…+k
n-r
ξ
n-r
=0. 因ξ
1
,ξ
2
,…,ξ
n-r
是对应齐次方程组的基础解系,故线性无关,得k
i
=0,i=1,2,…,n-r.代入(**)式,得k
0
=0.从而有η,η+ξ
1
,η+ξ
2
,…,η+ξ
n-r
是Ax=b的n-r+1个线性无关解向量.
解析
转载请注明原文地址:https://kaotiyun.com/show/qDj4777K
0
考研数学二
相关试题推荐
求直线绕z轴旋转而成的旋转曲面方程,并问a、b不同时为零时,该曲面为何种曲面?
设3阶实对称矩阵A的秩为2,且求矩阵A.
设3阶实对称矩阵A的特征值是1,2,3;矩阵A的属于特征值1,2的特征向量分别是α1=(一1,一1,1)T,α2=(1,一2,一1)T.求矩阵A.
设总体X的概率密度为其中参数θ(0
设向量α=(a1,a2,…,an)T,β=(b1,b2,…,bn)T都是非零向量,且满足条件αTβ=0.记n阶矩阵A=αβT,试求:A2;
对于任意二事件A,B,0<P(A)<1,0<P(B)<1,定义A与B的相关系数为(1)证明事件A,B相互独立的充分必要条件是其相关系数为零;(2)利用随机变量相关系数的基本性质,证明|ρAB|≤1.
已知向量组(I)β1=(0,1,一1)T,β2=(a,2,1)T,β3=(b,1,0)T与向量组(Ⅱ)α1=(1,2,一3)T,α2=(3,0,1)T,α3=(a,b,一7)T有相同的秩,且β3可由α1,α2,α3线性表示,求a,b的值.
设A为n阶可逆矩阵,α为n维列向量,b为常数,记分块矩阵其中A*是A的伴随矩阵,E为n阶单位矩阵.证明矩阵Q可逆的充分必要条件是αTA一1α≠b.
设函数设数列{x0}满足,证明存在,并求此极限.
设f(x)=∫0xecostdt,∫0πf(x)cosxdx=_______
随机试题
下列叙述正确的是()
利得和损失可能计入所有者权益,也可能计入当期损益。()
有关内燃机的主要性能指标的描述正确的是()。
CBOT是美国最大的交易中长期国债交易的交易所,当其30年期国债期货合约报价为96—21时,该合约价值为()。
下列关于股权投资基金管理人在基金募集中的责任和义务的说法中,正确的是()。
下列关于Windows2003系统下DNS服务器配置和测试的描述中,错误的是()
MorethanayearhaspassedsincethespaceshuttleColumbiabrokeintopiecesovercentralTexas.ThispastJanuaryPresidentB
Somepsychologistsmaintainthatmentalactssuchasthinkingarenotperformedinthebrainalone,butthatone’smusclesalso
随着中国国际地位的日益增强,中文、中国文化以及其他与之相关的事物开始在全球流行。世界上有超过3000万的外国人在学习中文。就读于中国高等学府的外国人数量也相当可观。越来越多的中国文学作品被翻译成外语。有外文配音(dub)的中国电影,常在欧美影院上映,吸引着
We’veBeenImaginingMountainsAllWrong,SayScientistsA)Fromthesimplestsketchestothemostadvancedscientificmodels
最新回复
(
0
)