首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2014年] 证明n阶矩阵相似.
[2014年] 证明n阶矩阵相似.
admin
2019-04-15
27
问题
[2014年] 证明n阶矩阵
相似.
选项
答案
记[*]因A为实对称矩阵,必可对角化. 由|λE-A|=λ
n
-nλ
n-1
=λ
n-1
(λ-n)=0可知A的特征值为n,0,0,…,0(n-1个。特征值),故A~diag(n,0,0,…,0)=A.又由|λE-B|=(λ-n)2
n-1
=0得到B的n个特征值为n,0,0,…,0(n-1个0特征值). 当λ=0时,秩(0E-B)=秩(B)=1,则n-秩(0E-B)=n-1,即齐次方程组(OE-B)X=0有n-1个线性无关的解,亦即λ=0时,B有n-1个线性无关的特征向量. 又λ=n时,秩(nE-B)=n-1,则n-秩(nE-B)=n-(n-1)=1,即齐次线性方程组(nE-B)X=0有一个线性无关的解,亦即B的属于特征值λ=n的线性无关的特征向量只有一个,从而B有n个线性无关的特征向量,于是B必与对角矩阵相似,且B~Λ=diag(n,0,0,…,0),由相似的传递性:A~Λ~B得到A~B. 或由A~Λ存在可逆矩阵P
1
使P
1
-1
AP
1
=Λ,由B~Λ存在可逆矩阵P
2
-1
BP
2
=Λ,于 是由P
1
-1
AP
1
=P
2
-1
BP
2
,得到P
2
P
1
-1
AP
1
P
2
-1
=(P
1
P
2
-1
)
-1
AP
1
P
2
-1
=B.令P=P
1
P
2
-1
,则P可逆,且使P
-1
AP=B(此法常称为用合成的方法求可逆矩阵P),因而A~B.
解析
转载请注明原文地址:https://kaotiyun.com/show/N7P4777K
0
考研数学三
相关试题推荐
(1)设A,B为n阶矩阵,|λE-A|=|λE-B|且A,B都可相似对角化,证明:A~B.(2)设矩阵A,B是否相似?若A,B相似,求可逆矩阵P,使得P-1AP=B.
参数A取何值时,线性方程组有无数个解?求其通解.
设A为三阶矩阵,A的第一行元素为1,2,3,|A|的第二行元素的代数余子式分别为a+1,a-2,a-1,则a=______.
如果用X,Y分别表示将一枚硬币连掷8次正反面出现的次数,则t的一元二次方程t2+Xt+Y=0有重根的概率是________。
设相互独立的两随机变量X与Y均服从分布B(1,),则P{X≤2Y}=()
已知随机变量X的概率密度(Ⅰ)求分布函数F(x)。(Ⅱ)若令Y=F(x),求Y的分布函数FY(y)。
已知随机变量X服从(1,2)上的均匀分布,在X=x条件下Y服从参数为x的指数分布,则E(XY)=________。
已知事件A与B相互独立,P(A)=a,P(B)=b。如果事件C发生必然导致事件A与B同时发生,则事件A、B、C均不发生的概率为________。
将一枚硬币重复掷n次,以X和Y分别表示正面向上和反面向上的次数,则X和Y的相关系数等于()
假设二维随机变量(X1,X2)的协方差矩阵为∑=,其中σij=Cov(Xi,Xj)(i,j=1,2),如果X1与X2的相关系数为p,那么行列式|∑|=0的充分必要条件是()
随机试题
阿昔洛韦为()。
受压杆件在下列各种支承情况下,若其他条件完全相同,其中临界应力最小的是()。
资产负债表是反映企业一定日期财务状况的( )。
通常,股价的变化要()发行公司盈利的变化。
2×20年1月1日,B公司为其100名中层以上管理人员每人授予100份现金股票增值权,这些人员从2×20年1月1日起必须在该公司连续服务2年,即可自2×21年12月31日起根据股价的增长幅度获得现金。该增值权应在2×22年12月31日之前行使完毕。B公司2
甲、乙两人站在匀速上升的自动扶梯从底部向顶部行走,甲每分钟走扶梯的级数是乙的2倍;甲走了36级到达顶部,而乙则走了24级到顶部。那么,自动扶梯有多少级露在外面?()
下列关于输入流类成员函数getline()的叙述中,错误的是
A、Theambitiontobecomethegreatestmagician.B、Therealitythathefailedinaswimmingrace.C、ThemagicianHoudiniandhis
Thestatement"Americansbathezealously"(Line1,Para.1)isclosesttosaying______.Abathwillnotkillthebacteriafrom
A、BecausetheystrolledundertheParismoon.B、Becauseshehadaninvitationfromherson.C、Becauseshedancedwithherson.D
最新回复
(
0
)