首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2014年] 证明n阶矩阵相似.
[2014年] 证明n阶矩阵相似.
admin
2019-04-15
32
问题
[2014年] 证明n阶矩阵
相似.
选项
答案
记[*]因A为实对称矩阵,必可对角化. 由|λE-A|=λ
n
-nλ
n-1
=λ
n-1
(λ-n)=0可知A的特征值为n,0,0,…,0(n-1个。特征值),故A~diag(n,0,0,…,0)=A.又由|λE-B|=(λ-n)2
n-1
=0得到B的n个特征值为n,0,0,…,0(n-1个0特征值). 当λ=0时,秩(0E-B)=秩(B)=1,则n-秩(0E-B)=n-1,即齐次方程组(OE-B)X=0有n-1个线性无关的解,亦即λ=0时,B有n-1个线性无关的特征向量. 又λ=n时,秩(nE-B)=n-1,则n-秩(nE-B)=n-(n-1)=1,即齐次线性方程组(nE-B)X=0有一个线性无关的解,亦即B的属于特征值λ=n的线性无关的特征向量只有一个,从而B有n个线性无关的特征向量,于是B必与对角矩阵相似,且B~Λ=diag(n,0,0,…,0),由相似的传递性:A~Λ~B得到A~B. 或由A~Λ存在可逆矩阵P
1
使P
1
-1
AP
1
=Λ,由B~Λ存在可逆矩阵P
2
-1
BP
2
=Λ,于 是由P
1
-1
AP
1
=P
2
-1
BP
2
,得到P
2
P
1
-1
AP
1
P
2
-1
=(P
1
P
2
-1
)
-1
AP
1
P
2
-1
=B.令P=P
1
P
2
-1
,则P可逆,且使P
-1
AP=B(此法常称为用合成的方法求可逆矩阵P),因而A~B.
解析
转载请注明原文地址:https://kaotiyun.com/show/N7P4777K
0
考研数学三
相关试题推荐
设函数f(x)=则在点x=0处f(x)().
设f(x)在[a,b]上连续,在(a,b)内可导(a>0).证明:存在ξ,η∈(a,b),使得
设向量组α1,…,αn为两两正交的非零向量组,证明:α1,…:αn线性无关,举例说明逆命题不成立.
设n维列向量组α1,α2,…,αm(m<n)线性无关,则n维列向量组β1,β2,…,βm线性无关的充分必要条件是().
设f(x)在[a,b]上二阶可导,且f’’(x)>0,证明:f(x)在(a,b)内为凹函数.
设二阶常系数非齐次线性微分方程y’’+y’+qy=Q(x)有特解y=3e-4x+x2+3x+2,则Q(x)=______,该微分方程的通解为______.
设随机变量X的分布函数为F(x),其密度函数为其中A为常数,则的值为()
设随机变量X在1,2,3中等可能地取值,随机变量Y在1~X中等可能地取值。求:(Ⅰ)二维随机变量(X,Y)的联合分布律及边缘分布律;(Ⅱ)求在Y=2的条件下X的条件分布。
将一枚硬币重复掷n次,以X和Y分别表示正面向上和反面向上的次数,则X和Y的相关系数等于()
计算dxdy,其中D为单位圆x2+y2=1所围成的第一象限的部分.
随机试题
(2021年德州齐河)()是最基本的教学方法,具体指通过语言系统连贯地向学生传授知识。
输卵管阻塞造成不孕与下列哪项无关
男,48岁。有慢性肝炎病史14年,近来腹胀、消瘦。体检:巩膜黄染,右上腹触到拳头大、质硬、表面不光滑包块,最可能诊断是
支气管扩张病人咳嗽、咳痰加重的时间是
确诊肺结核最重要的依据为
管棚超前支护是为安全开挖预先提供增强地层承载力的()支护方法。
把计算机与通信介质相连并实现局域网络通信协议的关键设备是()。
大多数典型行为测验是不受时间限制的,例如在()中,受测者的反应速度就不很重要。
下列不属于自我调控系统的是()。
Theprobablerelationshipbetweenthetwospeakersisdoctorand______.
最新回复
(
0
)