首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2014年] 证明n阶矩阵相似.
[2014年] 证明n阶矩阵相似.
admin
2019-04-15
41
问题
[2014年] 证明n阶矩阵
相似.
选项
答案
记[*]因A为实对称矩阵,必可对角化. 由|λE-A|=λ
n
-nλ
n-1
=λ
n-1
(λ-n)=0可知A的特征值为n,0,0,…,0(n-1个。特征值),故A~diag(n,0,0,…,0)=A.又由|λE-B|=(λ-n)2
n-1
=0得到B的n个特征值为n,0,0,…,0(n-1个0特征值). 当λ=0时,秩(0E-B)=秩(B)=1,则n-秩(0E-B)=n-1,即齐次方程组(OE-B)X=0有n-1个线性无关的解,亦即λ=0时,B有n-1个线性无关的特征向量. 又λ=n时,秩(nE-B)=n-1,则n-秩(nE-B)=n-(n-1)=1,即齐次线性方程组(nE-B)X=0有一个线性无关的解,亦即B的属于特征值λ=n的线性无关的特征向量只有一个,从而B有n个线性无关的特征向量,于是B必与对角矩阵相似,且B~Λ=diag(n,0,0,…,0),由相似的传递性:A~Λ~B得到A~B. 或由A~Λ存在可逆矩阵P
1
使P
1
-1
AP
1
=Λ,由B~Λ存在可逆矩阵P
2
-1
BP
2
=Λ,于 是由P
1
-1
AP
1
=P
2
-1
BP
2
,得到P
2
P
1
-1
AP
1
P
2
-1
=(P
1
P
2
-1
)
-1
AP
1
P
2
-1
=B.令P=P
1
P
2
-1
,则P可逆,且使P
-1
AP=B(此法常称为用合成的方法求可逆矩阵P),因而A~B.
解析
转载请注明原文地址:https://kaotiyun.com/show/N7P4777K
0
考研数学三
相关试题推荐
计算行列式.
设f(x)=,其中g(x)为有界函数,则f(x)在x=0处().
设周期为4的函数f(x)处处可导,且,则曲线y=f(x)在(-3,f(-3))处的切线为______.
设f(x),g(x)在区间[a,b]上连续,且g(x)<f(x)<m,则由曲线y=g(x),y=f(x)及直线x=a,x=b所围成的平面区域绕直线y=m旋转一周所得旋转体体积为().
设f(x)在[a,b]上连续,在(a,b)内二阶可导,f(a)=f(b),且f(x)在[a,b]上不恒为常数.证明:存在ξ,η∈(a,b),使得f’(ξ)>0,f’(η)<0.
已知二维随机变量(X,Y)的概率密度为(Ⅰ)试求(X,Y)的边缘概率密度fX(x),fY(y),并问X与Y是否独立;(Ⅱ)令Z=X—Y,求Z的分布函数FZ(y)(z)与概率密度fZ(y)(z)。
设A,B为随机事件,且,令(Ⅰ)求二维随机变量(X,Y)的概率分布;(Ⅱ)求X和Y的相关系数ρXY。
设随机变量X在1,2,3中等可能地取值,随机变量Y在1~X中等可能地取值。求:(Ⅰ)二维随机变量(X,Y)的联合分布律及边缘分布律;(Ⅱ)求在Y=2的条件下X的条件分布。
设A是n阶矩阵,α1,α2,…,αn是n维列向量,且αn≠0,若Aα1=α2,Aα2=α3,…,Aαn-1=αn,Aαn=0.(1)证明:α1,α2,…,αn线性无关;(2)求A的特征值与特征向量.
设A=有三个线性无关的特征向量,求a及An.
随机试题
凝固性坏死的组织学特点是
MR图像质量指标不包括
肛裂常用的检查方法是肛瘘常用的检查方法是
触摸应用于辅助疗法时,主要作用是
据报载,49岁的妇女周某在单位工作时,因其他工作人员的疏忽导致被重物砸伤,在送往医院的途中去世,目前其家人正在进行索赔、继承等事宜。下列有关这一案例的说法,不正确的是哪一项?()
根据《建设工程价款结算暂行办法》,下列在具备施工条件的前提下,对于工程预付款的支付时间叙述不正确的是()。
职能制组织形式在()环境中较为有效。
根据以下资料,回答问题。2005到2011年,平均每年新增城镇职工基本医疗保险参保者约为多少亿人?
设X1,X2,…,Xm与Y1,Y2,…,Yn分别为来自相互独立的标准正态总体X与y的简单随机样本,令,则D(Z)=________
(2008下软设)软件能力成熟度模型(CMM)将软件能力成熟度自低到高依次划分为初始级、可重复级、定义级、管理级和优化级。其中______对软件过程和产品都有定量的理解与控制。
最新回复
(
0
)