首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2014年] 证明n阶矩阵相似.
[2014年] 证明n阶矩阵相似.
admin
2019-04-15
69
问题
[2014年] 证明n阶矩阵
相似.
选项
答案
记[*]因A为实对称矩阵,必可对角化. 由|λE-A|=λ
n
-nλ
n-1
=λ
n-1
(λ-n)=0可知A的特征值为n,0,0,…,0(n-1个。特征值),故A~diag(n,0,0,…,0)=A.又由|λE-B|=(λ-n)2
n-1
=0得到B的n个特征值为n,0,0,…,0(n-1个0特征值). 当λ=0时,秩(0E-B)=秩(B)=1,则n-秩(0E-B)=n-1,即齐次方程组(OE-B)X=0有n-1个线性无关的解,亦即λ=0时,B有n-1个线性无关的特征向量. 又λ=n时,秩(nE-B)=n-1,则n-秩(nE-B)=n-(n-1)=1,即齐次线性方程组(nE-B)X=0有一个线性无关的解,亦即B的属于特征值λ=n的线性无关的特征向量只有一个,从而B有n个线性无关的特征向量,于是B必与对角矩阵相似,且B~Λ=diag(n,0,0,…,0),由相似的传递性:A~Λ~B得到A~B. 或由A~Λ存在可逆矩阵P
1
使P
1
-1
AP
1
=Λ,由B~Λ存在可逆矩阵P
2
-1
BP
2
=Λ,于 是由P
1
-1
AP
1
=P
2
-1
BP
2
,得到P
2
P
1
-1
AP
1
P
2
-1
=(P
1
P
2
-1
)
-1
AP
1
P
2
-1
=B.令P=P
1
P
2
-1
,则P可逆,且使P
-1
AP=B(此法常称为用合成的方法求可逆矩阵P),因而A~B.
解析
转载请注明原文地址:https://kaotiyun.com/show/N7P4777K
0
考研数学三
相关试题推荐
设向量组α1,…,αn为两两正交的非零向量组,证明:α1,…:αn线性无关,举例说明逆命题不成立.
设A为二阶矩阵,且A的每行元素之和为4,且|E+A|=0,则|2E+A2|为().
设u=f(z),其中z是由z=y+xφ(z)确定的x,y的函数,其中f(z)与φ(z)为可微函数.证明:.
设A,B为n阶矩阵,(1)求P.Q;(2)证明:当P可逆时,Q也可逆.
设A为三阶矩阵,且|A|=4,则=______.
设A,B为n阶对称矩阵,下列结论不正确的是().
设et2dt=∫0xcos(x-t)2dt确定y为x的函数,求.
设直线y=kx与曲线y=所围平面图形为D1,它们与直线x=1围成平面图形为D2.(1)求k,使得D1与D2分别绕x轴旋转一周成旋转体体积V1与V2之和最小,并求最小值;(2)求此时的D1+D2.
设f(x)在[a,b]上二阶可导,且f’’(x)>0,证明:f(x)在(a,b)内为凹函数.
设A,B为随机事件,0<P(A)<1,0<P(B)<1,则A,B相互独立的充要条件是()
随机试题
关于麻疹皮疹特点的下列说法中错误的是
患者男,43岁,回吸鼻涕带血2个月余。该患者首先应做如下哪些检查
有关医疗用毒性药品和放射性药品储存的描述,正确的有
铁路支撑建筑物的工程地质调绘范围应包括支撑工程以外不少于()m的范围。
建设项目竣工财务决算中的编制依据,主要包括( )。
下列模型中,()模型是在一定的经济假设下,依据一定的经济理论,建立众多经济变量之间的关系式,利用变量的历史序列数据对关系方程式组成的联立方程组进行回归分析运算,确定方程式中的经济参数,从而得出方程的确定形式。
多用于高档建筑及娱乐建筑的墙面或装饰用的玻璃是()。
国家主席习近平发表的二〇二二年新年贺词提到,无论是黄河长江“母亲河”,还是碧波荡漾的青海湖、逶迤磅礴的雅鲁藏布江;无论是南水北调的世纪工程,还是塞罕坝林场的“绿色地图”;无论是云南大象北上南归,还是藏羚羊繁衍迁徙……这些都昭示着,()。
(2008年)设f(x)是连续函数。(I)利用定义证明函数可导,且F′(x)=f(x);(Ⅱ)当f(x)是以2为周期的周期函数时,证明函数也是以2为周期的周期函数。
Whatarethesetwopeopletalkingabout?
最新回复
(
0
)