首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
没A为三阶矩阵,方程组AX=0的基础解系为α1,α2,又λ=-2为A的一个特征值,其对应的特征向量为α3,下列向量中是A的特征向量的是( ).
没A为三阶矩阵,方程组AX=0的基础解系为α1,α2,又λ=-2为A的一个特征值,其对应的特征向量为α3,下列向量中是A的特征向量的是( ).
admin
2017-12-31
61
问题
没A为三阶矩阵,方程组AX=0的基础解系为α
1
,α
2
,又λ=-2为A的一个特征值,其对应的特征向量为α
3
,下列向量中是A的特征向量的是( ).
选项
A、α
1
+α
3
B、3α
3
-α
1
C、α
1
+2
2
+3
3
D、2α
1
-3α
2
答案
D
解析
因为AX=0有非零解,所以r(A)<n,故0为矩阵A的特征值,α
1
,α
2
为特征值0所对应的线性无关的特征向量,显然特征值0为二重特征值,若α
1
+α
3
为属于特征值λ
0
的特征向量,则有A(α
1
+α
3
)=λ
0
(α
1
+α
3
),注意到A(α
1
+α
3
)=0α
1
-2α
3
,故-2α
3
=λ
0
(α
1
+α
3
)或λ
0
α
1
+(λ
0
+2)α
3
=0,因为α
1
,α
3
线性无关,所以有λ
0
=0,λ
0
+2=0,矛盾,故α
1
+α
3
不是特征向量,同理可证3α
3
-α
1
及α
1
+2α
2
+3α
3
也不是特征向量,显然2α
1
-3α
2
为特征值O对应的特征向量,选(D).
转载请注明原文地址:https://kaotiyun.com/show/uDX4777K
0
考研数学三
相关试题推荐
设矩阵求A的特征值;
设A是m×n矩阵,B是n×m矩阵,则线性方程组(AB)x=0
设随机变量X的概率分布为P{X=1}=P{X=2}=。在给定X=i的条件下,随机变量Y服从均匀分布U(0,i)(i,2)。求EY。
对随机变量X,Y,已知EX2和EY2存在,证明:[E(XY)]2≤E(X2).E(Y2)。
设α,β是三维单位正交列向量,令A=αβT+βαT.证明:(1)|A|=0;(2)α+β,α-β是A的特征向量;(3)A相似于对角阵,并写出该对角阵.
计算二重积分(x2+y)dσ,其中D是由x2+y2=2y的上半圆,直线x=一1,x=1及x轴围成的区域.
微分方程y"一2y’+y=ex有特解形式()
设函数y=y(x)由方程ylny一x+y=0确定,试判断曲线y=y(x)在点(1,1)附近的凹凸性.
设f(x)=,则f(x)的间断点为x=_____.
设函数f(x)在(-∞,+∞)内满足f(x)=f(x-π)+sinx,且当x∈[0,π)时,f(x)=x,求
随机试题
在剪板机的下列参数中,只有________是可调的。
通阳散结,行气导滞是下列哪味药的功效
治疗变异型心绞痛的首选药是
下列除哪项外,均是附子的主治证()
设备监理的主要任务是(),这种任务与其他工程咨询工作有很大的区别。
将物流划分为供应物流、销售物流、生产物流、回收物流和废弃物物流的依据是()。
教学《雷雨》,教师导入:“20世纪30年代,年仅23岁的曹禺在清华园创作了一部四幕剧:在幻想、憧憬、挣扎、嚎叫之后,雷雨之夜,三个爱恨交织有着火热人生的年轻人,同时踏上了生命的不归路。除了生命毁灭的沉默和黑暗之外,《雷雨》到底还有多少未解之谜?究竟还
96,89,81,72,62,51,( )
为使文本框具有初始值"VB",在设计阶段正确的操作是
A、Sheattendedoneoftheirmeetings.B、Herroommateisamember.C、Shereadabouttheminthenewspaper.D、Shesawthemprotest
最新回复
(
0
)