设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,∫abf(x)dx=0.证明: 存在ξ∈(a,b),使得f"(ξ)=f(ξ).

admin2021-11-25  23

问题 设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,∫abf(x)dx=0.证明:
存在ξ∈(a,b),使得f"(ξ)=f(ξ).

选项

答案令ψ(x)=e-x[f’(x)+f(x)],ψ(ξ1)=ψ(ξ2)=0,由罗尔定理,存在ξ∈(ξ12)[*](a,b),使得ψ’(ξ)=0 而ψ’(x)=e-x[f"(x)-f(x)]且e-x≠0,所以f"(ξ)=f(ξ)

解析
转载请注明原文地址:https://kaotiyun.com/show/N7y4777K
0

最新回复(0)