首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设z=f(x,y)在点(x0,y0)处可微,△z是f(x,y)在点(x0,y0)处的全增量,则在点(x0,y0)处( )
设z=f(x,y)在点(x0,y0)处可微,△z是f(x,y)在点(x0,y0)处的全增量,则在点(x0,y0)处( )
admin
2020-03-01
35
问题
设z=f(x,y)在点(x
0
,y
0
)处可微,△z是f(x,y)在点(x
0
,y
0
)处的全增量,则在点(x
0
,y
0
)处( )
选项
A、△z=dz。
B、△z=f
x
’
(x
0
,y
0
)△x+f
y
’
(x
0
,y
0
)△y。
C、△z=f
x
’
(x
0
,y
0
)dx+f
y
’
(x
0
,y
0
)dy。
D、△z=dz+o(ρ)。
答案
D
解析
由于z=f(x,y)在点(x
0
,y
0
)处可微,则
△z=f
x
’
(x
0
,y
0
)△x+f
y
’
(x
0
,y
0
)△y+o(ρ)=dz+o(ρ),
故选D。
转载请注明原文地址:https://kaotiyun.com/show/TNA4777K
0
考研数学二
相关试题推荐
设其中a2+c2≠0,则必有()
设f(x)在R上连续,且f(x)≠0,φ(x)在R上有定义,且有间断点,则下列结论中正确的个数是()①φ[f(x)]必有间断点;②[φ(x)]2必有间断点;③f(φ(x)]没有间断点。
设向量组(Ⅰ):α1,α2,…,αs的秩为r1,向量组(Ⅱ):β1,β2,…,βs的秩为r2,且向量组(Ⅱ)可由向量组(Ⅰ)线性表示,则().
设A为m×n阶矩阵,则方程组AX=b有唯一解的充分必要条件是().
设α1,α2,α3,β1,β2都是四维列向量,且|A|=|α1,α2,α3,β1|=m,|B|=|α1,α2,β2,α3|=n,则|α3,α2,α1,β1+β2|为().
设向量组α1,α2,α3线性无关,则下列向量组线性相关的是
设二次型f(χ1,χ2,χ3)=χ12+χ22+χ32+2aχ1χ2+2βχ2χ3+2χ1χ3经正交变换化成了标准形f=y22+2y32,其中p为正交矩阵,则α=_______,β=_______.
二次型f(x1,x2,x3)=(a1x1+a2x2+a3x3)(b1x1+b2x2+b3x3)的矩阵为________。
设n阶矩阵A正定,X=(x1,x2,…,xn)T,证明:二次型f(x1,x2,…,xn)=为正定二次型.
已知三元二次型xTAx的平方项系数均为0,设α=(1,2,—1)T且满足Aα=2α。求正交变换x=Qy化二次型为标准形,并写出所用坐标变换。
随机试题
要求信息资料收集人员有比较扎实的市场学专业知识的信息筛选方法是()
在我国急性胰腺炎的最常见病因是
首席风险官对于侵害客户和期货公司合法权益的指令或者授意应当予以拒绝;必要时,应当及时向()报告。
甲公司2018年至2019年与股票投资相关的资料如下:(1)2018年1月2日,购入乙公司发行的股票100万股,支付购买价款1080万元,其中包括已宣告但尚未发放的现金股利30万元;甲公司对乙公司不具有控制、共同控制或重大影响,且持有该股票的目的不具有
张某将个人拥有产权的房屋出典给李某,则李某为该房屋房产税的纳税人。()(2008年)
股份公司在某个财务年度内的盈余不足以支付规定的股利时,必须在以后盈利较多的年度如数补足过去所欠股利,这种股票是()。
王老师观察到,在若干次探究性小组合作学习的讨论环节中,孙丽同学自己总是拿不定主意,要靠同伴拿主意。这说明孙丽的学习风格属于()。
下列哪一选项描述的是竞争关系:
业务用例和参与者一起描述_______(10),而业务对象模型描述_______(11)。(10)
Acarismadeupofmorethan30000parts.Eachpartinanewcarisasweakasababy.Soanewcarrequirespropercareands
最新回复
(
0
)