首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为n阶矩阵,A11≠0.证明:非齐次线性方程组AX=b有无穷多个解的充分必要条件是A*b=0.
设A为n阶矩阵,A11≠0.证明:非齐次线性方程组AX=b有无穷多个解的充分必要条件是A*b=0.
admin
2020-03-16
102
问题
设A为n阶矩阵,A
11
≠0.证明:非齐次线性方程组AX=b有无穷多个解的充分必要条件是A
*
b=0.
选项
答案
设非齐次线性方程组AX=b有无穷多个解,则r(A)<n,从而|A|=0, 于是A
*
b=A
*
AX=|A|X=0. 反之,设A
*
b=0,因为b≠0,所以方程组A
*
X=0有非零解,从而r(A
*
)<n,又A
11
≠0,所以r(A
*
)=1,且r(A)=n-1. 因为r(A
*
)=1,所以方程组A
*
X=0的基础解系含有n-1个线性无关的解向量,而A
*
A=0,所以A的列向量组α
1
,α
2
,…,α
n
为方程组A
*
X=0的一组解向量. 由A
11
≠0.得α
2
,…,α
n
线性无关,所以α
2
,…,α
n
是方程组A
*
X=0的基础解系. 因为A
*
b=0,所以b可由α
2
,…,α
n
线性表示,也可由α
1
,α
2
,…,α
n
线性表示,故r(A)=[*]=n-1<n,即方程组AX=b有无穷多个解.
解析
转载请注明原文地址:https://kaotiyun.com/show/rdA4777K
0
考研数学二
相关试题推荐
设齐次线性方程组的系数矩阵为A=,设Mi(i=1,2,…,n)是A中划去第i列所得到的n—1阶子式。证明:如果A的秩为n—1,则方程组的所有解向量是(M1,—M2,…,(—1)n—1Mn)的倍数。
设函数y=y(x)由参数方程(t>1)所确定,求
[20l5年]已知函数f(x)在区间[a,+∞]上具有2阶导数,f(a)=0,f′(x)>0,f″(0)>0.设b>a,曲线y=f(x)在点(b,f(b))处的切线与x轴的交点是(x0,0),证明a<x0<b.
(1999年)设矩阵A=矩阵X满足A*X=A-1+2X,其中A*是A的伴随矩阵,求矩阵X.
(1996年)设f(χ)为连续函数.(1)求初值问题的解y(χ),其中a是正常数;(2)若|f(χ)|≤k(k为常数),证明:当χ≥0时,有|y(χ)|≤(1-e-aχ)
设A=E为3阶单位矩阵.(Ⅰ)求方程组Ax=0的一个基础解系;(Ⅱ)求满足AB=E的所有矩阵B.
已知A,B为三阶非零矩阵,且。β1=(0,1,一1)T,β2=(a,2,1)T,β3=(b,1,0)T是齐次线性方程组Bx=0的三个解向量,且Ax=β3有解。求Bx=0的通解。
A,B均是n阶矩阵,且AB=A+B.证明:A—E可逆,并求(A—E)一1.
当a,b取何值时,方程组无解、有唯一解、有无数个解?在有无数个解时求其通解.
随机试题
竹笋在我国主要产于________。
现代企业的会计制度具有国际通用规范的性质。()
A、 B、 C、 D、 C
关于抗疟药下列说法正确的是
以下对有关指标说法正确的是()。
台灯作为一个实体可由市场决定其生产量,这种需求量是()。
《尚书》是中国文学史上第一部记叙文和议论文。()
2019年9月23日,“()——庆祝中华人民共和国成立70周年大型成就展”开幕式在北京展览馆举行。中共中央政治局常委、国务院总理李克强出席开幕式并讲话。
Evidenceofthebenefitsthatvolunteeringcanbringolderpeoplecontinuestorollin."Volunteershaveimprovedphysicalands
Whenyourunyourhandsthroughyourlover’shair,you’reprobablynotthinkingaboutyourplaceinthesocialhierarchy.Givey
最新回复
(
0
)