首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n维列向量组α1,α2,…,αn线性无关,P为n阶方阵,证明:向量组Pα1,Pα2,…,Pαm线性无关|P|≠0.
设n维列向量组α1,α2,…,αn线性无关,P为n阶方阵,证明:向量组Pα1,Pα2,…,Pαm线性无关|P|≠0.
admin
2018-07-31
82
问题
设n维列向量组α
1
,α
2
,…,α
n
线性无关,P为n阶方阵,证明:向量组Pα
1
,Pα
2
,…,Pα
m
线性无关
|P|≠0.
选项
答案
n个n维列向量Pα
1
,Pα
2
,…,Pα
n
线性无关[*]行列式|Pα
1
,Pα
2
,…,Pα
n
|≠0,而 [Pα
1
,Pα
2
,…,Pα
n
]=P[α
1
,α
2
,…,α
n
],两端取行列式,得|Pα
1
,…,Pα
n
|=|P||α
1
,…,α
n
|,又由已知条件知行列式|α
1
,…,α
n
|≠0,故行列式|Pα
1
,…,Pα
n
|≠0[*]|P|≠0.
解析
转载请注明原文地址:https://kaotiyun.com/show/N9j4777K
0
考研数学二
相关试题推荐
设向量组α1,α2,α3线性无关,向量β1可由α1,α2,α3线性表示,而向量β2不能南α1,α2,α3线性表示,则对于任意常数k,必有
设矩阵A=相似于矩阵B= (I)求a,b的值; (II)求可逆矩阵P,使P-1AP为对角矩阵.
设f(x)在[0,1]上连续,且0<m≤f(x)≤M,对任意的x∈[0,1],证明:
设f(x)是二阶常系数非齐次线性微分方程y"+py’+qy=sin2x+2ex的满足初始条件f(0)=f’(0)=0的特解,则当x→0时,().
设曲线y=,过原点作切线,求此曲线、切线及x轴所围成的平面图形绕x轴旋转一周所成的旋转体的表面积.
设二次型f=2x12+x22+ax32+2x1x2+2bx13+2x2x3经过正交变换X=QY化为标准形f=y12+y22+4y32,求参数a,b及正交矩阵Q.
设A为n阶矩阵,若Ak-1α≠0,而Akα=0.证明:向量组α,Aα,…,Ak-1α线性无关.
设A=(aij)n×n为实对称矩阵,求二次型函数f(x1,x2,…,xn)=在Rn上的单位球面S:x12+x22+…+xn2=1上的最大值与最小值.
设二次型f(x1,x2,x3)=2(a1x1+a2x2+a3x3)2+(b1x1+b2x2+b3x3)2,记若α,β正交且均为单位向量,证明f在正交变换下的标准形为2y12+y22.
设A是n阶实对称矩阵.证明:(1)存在实数c,使对一切χ∈Rn,有|χTAχ|≤cχTχ.(2)若A正定,则对任意正整数k,Ak也是对称正定矩阵.(3)必可找到一个数a,使A+aE为对称正定矩阵.
随机试题
高含硫油气井是指地层天然气中硫化氢含量高于()的井。
维持与创新逻辑上的相互连接、互为延续的关系意味着两者在空间和时间上的分离。()
对于交通性气胸患者,采用胸腔闭式引流治疗时,错误的说法是
《中华人民共和国矿产资源法》规定:矿产资源属于国家所有,由( )行使国家对矿产资源的所有权。地表或者地下的矿产资源的国家所有权,不因其所依附的土地的所有权或者使用权的不同而改变。
关于钢筋混凝土桥梁钢筋接头设置的说法,正确的有()。
期货公司可以为未签订《期货经纪合同》的客户开立账户。()
广义公司法人治理结构所涉及的方面包括()。Ⅰ.公司的财务制度Ⅱ.公司的收益分配和鼓励机制Ⅲ.公司的内部制度和管理Ⅳ.公司人力资源管理
全国银行间市场债券托管账户是以( )的名义开立的。
ThewriterholdstheviewthatpeopleseldomTheorganizersofthecompetitionhopedtheschoolchildrenwhotookpartinwould
Now,youngpeoplearegrabbingtheirpassportsandtravelaroundtheworldontheirown,notbecausetheyhavenoonetotravel
最新回复
(
0
)