首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知随机变量X的概率密度为f(χ)=Aeχ(B-χ)(-∞<χ<+∞),且有EX=2DX,试求: (Ⅰ)常数A,B的值; (Ⅱ)E(X2+eχ); (Ⅲ)Y=的分布函数F(y).
已知随机变量X的概率密度为f(χ)=Aeχ(B-χ)(-∞<χ<+∞),且有EX=2DX,试求: (Ⅰ)常数A,B的值; (Ⅱ)E(X2+eχ); (Ⅲ)Y=的分布函数F(y).
admin
2019-07-19
45
问题
已知随机变量X的概率密度为f(χ)=Ae
χ(B-χ)
(-∞<χ<+∞),且有EX=2DX,试求:
(Ⅰ)常数A,B的值;
(Ⅱ)E(X
2
+e
χ
);
(Ⅲ)Y=
的分布函数F(y).
选项
答案
(Ⅰ)由f(χ)=Ae
χ(B-χ)
=[*] 将f(χ)看成正态分布X~N([*])的密度函数,由已知条件 EX=2DX,得[*]=1,B=2. 而[*] 从而A=[*],B=2. (Ⅱ)E(X
2
+e
χ
)=EX
2
+Ee
χ
EX
2
=DX+(EX)
2
=[*] [*] 故E(χ
2
+e
χ
)=[*] (Ⅲ)X~N(1,[*]),X-1~N(0,[*]),[*](X-1)~N(0,1). 当y<0时,F(y)=0 当y≥0时,F(y)=P{Y≤y}=P{[*]|X-1|≤y}=P{-y≤[*](X-1)≤y} =[*] =2[Ф(y)-Ф(0)]=2Ф(y)-1. 其中Ф(y)为标准正态分布的分布函数.
解析
转载请注明原文地址:https://kaotiyun.com/show/NAc4777K
0
考研数学一
相关试题推荐
[*]
若α1,α2,α3线性相关,α2,α3,α4线性无关,则().
设an=cosnπ.ln(n=1,2,3,…),则级数()
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,∫abf(x)dx=0.证明:存在c∈(a,b),使得f(c)=0;
试求下列幂级数的收敛域:
设有齐次线性方程组Ax=0及Bx=0,其中A、B均为m×n矩阵,现有以下4个命题①若Ax=0的解均是Bx=0的解,则R(A)≥R(B);②若R(A)≥R(B),则Ax=0的解均是Bx=0的解;③若Ax=0与Bx=0同解,则R(A)=R(B);④若R
设f(x)在[0,1]上二阶可导,且|f(x)|≤a,|f’’(x)|≤b,其中a,b都是非负常数,c为(0,1)内任意一点.证明:|f’(c)|≤2a+.
设f(x)在[0,1]上二阶可导,且|f(x)|≤a,|f’’(x)|≤b,其中a,b都是非负常数,c为(0,1)内任意一点.写出f(x)在x=c处带拉格朗日型余项的一阶泰勒公式;
设n阶矩阵A,B等价,则下列说法中,不一定成立的是()
计算行列式
随机试题
A.淋巴结结构破坏,大量单一肿瘤性细胞增生B.淋巴结结构破坏,多种炎细胞及R-S细胞增生C.淋巴结内瘤细胞排列成滤泡结构D.淋巴结结构破坏,大量原始粒细胞浸润滤泡性非霍奇金淋巴瘤
A.Ⅰ/甲B.Ⅰ/乙C.Ⅱ/甲D.Ⅱ/乙E.Ⅲ/丙阑尾穿孔术后切口化脓,应记录为
伴有左心室肥厚的高血压患者降压应首选
以下对城市排水体制的选择不合理的是()。
概算定额手册的内容包括()。
借贷记账法具有以下优点( )。
已知数列{an}的前n项和Sn=n2+kn(k∈N*),且Sn的最大值为8。(1)确定常数k,求an;(2)求数列{}的前n项和Tn。
(1)用热水洗去木屑(2)将纸从印版上揭起并阴干(3)把纸覆盖在版面上,用刷子轻轻刷纸(4)用刷子蘸墨汁均匀刷于版面上(5)将有字的一面贴在木板上,由刻字工逐字雕刻(6)将书稿写于纸上
Ononeoftheshelvesofanolddresser,incompanywitholdanddustysauce-boats,jugs,dishesandplates,andpaidbills,res
DearManager,Iamwritingtoyoutocomplainabouttheserviceinyourhotel.Ihadaterriblestayinroom2532ofOrange
最新回复
(
0
)