首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设3阶实对称矩阵A的特征值λ1=1,λ2=2,λ3=一2,α1=(1,一1,1)T是A的属于特征值λ1的一个特征向量,记B=A5一4A3+E,其中E为3阶单位矩阵. (1)验证α1是矩阵B的特征向量,并求B的全部特征值与特征向量; (2)求矩阵B.
设3阶实对称矩阵A的特征值λ1=1,λ2=2,λ3=一2,α1=(1,一1,1)T是A的属于特征值λ1的一个特征向量,记B=A5一4A3+E,其中E为3阶单位矩阵. (1)验证α1是矩阵B的特征向量,并求B的全部特征值与特征向量; (2)求矩阵B.
admin
2020-03-16
81
问题
设3阶实对称矩阵A的特征值λ
1
=1,λ
2
=2,λ
3
=一2,α
1
=(1,一1,1)
T
是A的属于特征值λ
1
的一个特征向量,记B=A
5
一4A
3
+E,其中E为3阶单位矩阵.
(1)验证α
1
是矩阵B的特征向量,并求B的全部特征值与特征向量;
(2)求矩阵B.
选项
答案
(1)由Aα
1
=α
1
得A
2
α
1
=Aα
1
=α
1
,依次递推,则有A
3
α
1
=α
3
,A
5
α
1
=α
1
,故 Bα
1
=(A
5
一4A
3
+E)α
1
=A
5
α
1
一4A
3
α
1
+α
1
=-2α
1
,即α
1
是矩阵B的属于特征值一2的特征向量. 由关系式B=A
5
-4A
3
+E及A的3个特征值λ
1
=1,λ
2
=2,λ
3
=-2得B的3个特征值为μ
1
=-2,μ
2
=1,μ
3
=1. 设α
2
,α
3
为B的属于μ
2
=μ
3
=1的两个线性无关的特征向量,又由A为对称矩阵,则B也是对称矩阵,因此α
1
与α
2
、α
3
正交,即α
1
T
α
2
=0,α
1
T
α
3
=0.因此α
2
,α
3
可取为下列齐次线性方程组两个线性无关的解,即 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/NOA4777K
0
考研数学二
相关试题推荐
[2005年]设函数f(x)连续,且f(0)≠0,求极限
设f(x)=求∫13f(x一2)dx.
[2009年]计算不定积分∫ln(1+)dx(x>0).
[2004年]设z=f(x2一y2,exy),其中f具有连续二阶偏导数,求.
[2014年]设函数u(x,y)在有界闭区域D上连续,在D内具有2阶连续偏导数,且满足≠0及=0,则().
[2008年]曲线y=(x一5)x3的拐点坐标为________.
(2006年试题,一)广义积分
[2004年]曲线y=(ex+e-x)/2与直线x=0,x=t(t>0)及y=0围成一曲边梯形.该曲边梯形绕x轴旋转一周得一旋转体,其体积为V(t),侧面积为S(t),在x=t处的底面积为F(t).求的值;
设A是3×4阶矩阵且r(A)=1,设(1,-2,1,2)T,(1,0,5,2)T,(-1,2,0,1)T,(2,-4,3,a+1)T皆为AX=0的解.求常数a;
求单位向量β3,使向量组β1=(1,1,0)T,β2=(1,1,1)T,β3与向量组α1=(0,1,1)T,α2=(1,2,1)T,α3=(1,0,一1)T的秩相同,且β4可由α1,α2,α3线性表示.
随机试题
一般在肠梗阻发生________,X线检查即显示出肠腔内气体;立位或侧卧位透视或拍片,可见________和________________。
A.遗传性球形红细胞增多症B.海洋性贫血C.遗传性椭圆形红细胞增多症D.丙酮酸激酶缺乏症E.自体免疫性溶血性贫血体内产生自身抗体的是
随着生活节奏的加快,过度的劳累常会使生理功能衰退或脏腑功能紊乱,导致各种疾病,从而出现各种虚证,而治疗虚证的中成药应根据机体虚损的具体情况,有针对性的选择。天王补心丹中的三参是
具有经营毒性中药资格的企业采购毒性中药饮片,必须从持有毒性中药饮片定点生产证的生产企业和具有经营毒性中药资格的批发企业购进。()
公开透明地合理确定()的最佳途径就是通过施工总承包人与工程建设项目招标。人共同组织的招标。
拖拉机厂电工张某,自恃技术熟练,在检修电路时不按规定操作,造成电路着火,部分设备被烧毁,损失十多万元,张某的行为构成()。
杜威认为人的行为的善恶是从“——”标准评价出来的,能满足人的愿望、需要和兴趣的就是有道德价值的。
说一说“一带一路”的定义及内涵。(北京师范大学2016)
(2011上集管)以下对信息系统集成的描述不正确的是______。
在VisualFoxPro中,要运行菜单文件menu1.mpr,可以使用命令( )。
最新回复
(
0
)