首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2016年] 已知函数z=z(x,y)由方程(x2+y2)z+lnz+2(x+y+1)=0确定.求z=z(x,y)的极值.
[2016年] 已知函数z=z(x,y)由方程(x2+y2)z+lnz+2(x+y+1)=0确定.求z=z(x,y)的极值.
admin
2019-04-05
73
问题
[2016年] 已知函数z=z(x,y)由方程(x
2
+y
2
)z+lnz+2(x+y+1)=0确定.求z=z(x,y)的极值.
选项
答案
先由z′
x
=0,z′
y
=0,求出所有驻点,对每一个驻点(x
0
,y
0
),求出A=f″
xx
(x
0
,y
0
), B=f″
xy
(x
0
,y
0
),C=f″
yy
(x
0
,y
0
)的值,再利用命题1.4.3.2判别之,并求出其极值. (1)先求出驻点.为此在所给方程两边分别对x,y求偏导,得到 2xz+(x
2
+y
2
)[*]+2=0, ① 由对称性即得 2yz+(x
2
+y
2
)[*]+2=0, ② 令[*]得到[*] 即[*](z=0,lnz没有意义,舍去),故[*] 当x≠0时,将z=[*],y=x代入原方程得ln(一[*])=一2(x+1),即一[*]=e
-2(x+1)
,因而zx=一1.于是y
0
一x
0
=一1,z
0
=1,即所求驻点(z
0
,y
0
,z
0
)=(一l,一1,1). 当x=0时,由xz+1=0得到1=0矛盾,故方程①无解. (2)求出A,B,C在驻点处的值,为此在方程①两边分别对x,y求偏导,得到 [*] 在式②两边对y求偏导,得到 [*]⑤ 得x=x
0
=-1,y=y
0
=一1,z=z
0
=1.代入式③,式④,式⑤得到 [*] 因AC—B
2
=[*]>0,A<0,由命题1.4.3.2知,函数在x
0
=一1,y
0
=一1处取极大值,且极大值为1.
解析
转载请注明原文地址:https://kaotiyun.com/show/HPV4777K
0
考研数学二
相关试题推荐
某企业的收益函数为R(Q)=40Q-4Q2,总成本函数C(Q)=2Q2+4Q+10,如果政府对该企业征收产品税T=Qt,其中t为税率,求(1)税收最大时的税率;(2)企业纳税后的最大利润.
设一锥形贮水池,深15m,口径20m,盛满水,今以吸筒将水吸尽,问作多少功?
设f(x)在[0,a](a>0)上非负、二阶可导,且f(0)=0,为y=f(x),y=0,x=a围成区域的形心,证明:
假设函数f(x)和g(x)在[a,b]上存在二阶导数,并且g’’(x)≠0,f(A)=f(B)=g(a)=g(b)=0,试证:在开区间(a,b)内g(x)≠0;
若函数f(x)在(一∞,+∞)内满足关系式f’(x)=f(x),且f(0)=1,证明:f(x)=ex.
设矩阵已知A有3个线性无关的特征向量,λ=2是A的二重特征值.试求可逆矩阵P,使得P一1AP为对角形矩阵.
设x→a时,f(x)与g(x)分别是x—a的n阶与m阶无穷小,则下列命题中,正确的个数是()①f(x)g(x)是x—a的n+m阶无穷小;②若n>m,则是x一a的n—m阶无穷小;③若n≤m,则f(x)+g(x)是x一a的n阶无穷小。
(2002年试题,九)设0
[2008年]设f(x)=x2(x一1)(x一2).则f′(x)的零点个数为().
[2005年]确定常数a,使向量组α1=[1,1,a]T,α2=[1,a,1]T,α3=[a,1,1]T可由向量组β1=[1,1,a]T,β2=[一2,a,4]T,β3=[一2,a,a]T线性表示,但向量组β1,β2,β3不能由向量组α1,α2,α3线
随机试题
bilingualism
从作品容量和规模上看,现代小说包括的三个基本类型是()
成熟的Th细胞的表面标志是
关于甲状腺功能亢进症的药物保守疗法,哪—项是错误的
狂证火盛伤阴证,其治法是()
男,1个月。咳嗽1天,发热3小时,T39.3℃,就诊过程中突然双眼上翻,肢体强直,持续1分钟。查体:咽红,心肺腹及神经系统无异常,半年前也有相同病史,最可能的诊断是
医疗器械标签和包装标识应当符合
一级资本的来源最常用的方式有()。
《巴塞尔新资本协议》要求银行信息披露的范围包括()。
设某商品的收益函数为R(p),收益弹性为1+p+plnp(其中p是价格),且R(1)=1,则R(p)=_________.
最新回复
(
0
)