首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为三阶矩阵,特征值为λ1=λ2=1,λ3=2,其对应的线性无关的特征向量为a1,a2,a3,令P1=(a1一a3,a2+a3,),则A*P1=( ).
设A为三阶矩阵,特征值为λ1=λ2=1,λ3=2,其对应的线性无关的特征向量为a1,a2,a3,令P1=(a1一a3,a2+a3,),则A*P1=( ).
admin
2022-06-19
57
问题
设A为三阶矩阵,特征值为λ
1
=λ
2
=1,λ
3
=2,其对应的线性无关的特征向量为a
1
,a
2
,a
3
,令P
1
=(a
1
一a
3
,a
2
+a
3
,),则
A*P
1
=( ).
选项
A、
B、
C、
D、
答案
A
解析
A*的特征值为2,2,1,其对应的线性无关的特征向量为a
1
,a
2
,a
3
,
令P=(a
1
,a
2
,a
3
),则p
-1
A*P=
,
由P
1
=P
得
.
选(A)
转载请注明原文地址:https://kaotiyun.com/show/NPR4777K
0
考研数学三
相关试题推荐
下列说法正确的是().
设A,B为正定矩阵,C是可逆矩阵,下列矩阵不是正定矩阵的是().
设向量组α1,α2,…,αs为齐次线性方程组AX=0的一个基础解系,Aβ≠0.证明:齐次线性方程组BY=0只有零解,其中B=(β,β+α1,…,β+αs).
设A是3×4阶矩阵且r(A)=1,设(1,-2,1,2)T,(1,0,5,2)T,(-,2,0,1)T,(2,-4,3,a+1)T皆为AX=0的解.(1)求常数a;(2)求方程组AX=0的通解.
参数a取何值时,线性方程组有无数个解?并求其通解.
设随机变量X,Y独立同分布,且X~N(0,σ2),再设U=aX+bY,V=aX-by,其中a,b为不相等的常数.求:(1)E(U),E(V),D(U),D(V),ρUV;(2)设U,V不相关,求常数a,b之间的关系.
设f(x)在x=0的邻域内有定义,且f(0)=0,则f(x)在x=0处可导的充分必要条件是().
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,证明:存在ξ∈(a,b),使得f’(ξ)+2f(ξ)=0.
把f(x,y)dxdy写成极坐标的累次积分,其中D={(x,y)|0≤x≤1,0≤y≤x}.
曲线y=x(x-1)(2-x)与x轴所围成的图形面积可表示为().
随机试题
(2013年第73题)男性,82岁。体型较消瘦,3个月前口服葡萄糖耐量试验诊为糖尿病,平时空腹血糖6.5~7.2mmol/L,餐后2小时血糖12.14mmol/L,有冠心病心衰病史10年,结肠癌术后5年。为控制血糖,应首选的药物是
关于月经周期中宫颈黏液的变化,下列各项正确的是
电镜下细胞内充满电子透明的分泌颗粒的细胞是
女,42岁。阵发性心悸3年,无心跳间歇感,发作时按摩颈动脉心悸可突然停止。发作时心电图显示:心室率190次/分,逆行P波,QRS波群形态与时限正常。该患者最可能的诊断是()
西医的手癣,在中医中被命名为__________。
基金投资者在“买进”与“卖出”基金环节一次性支出的费用是()。
“一个完善的人,必定具备思维力、意志力和心力。思维力是认识之光,意志力是品性之能,心力是爱”,因此人的本质是理性、意志和心。()
银行家算法在解决死锁问题中是用于()的。
下列方程中有一个是一阶微分方程,它是[].
A、 B、 C、 D、 B形式化证明方法用来证明一个协议是安全的,它是人们所希望的,但是一般的协议安全性是不可判定的,所以形式化证明的方法不能有效防范黑客攻击,故选B。
最新回复
(
0
)