首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
二次型f(x1,x2,x3)=x12+ax22+x32-4x1x2-8x1x3-4x2x3经过正交变换化为标准形5y12+6y22-4y32,求: (1)常数a,b;(2)正交变换的矩阵Q.
二次型f(x1,x2,x3)=x12+ax22+x32-4x1x2-8x1x3-4x2x3经过正交变换化为标准形5y12+6y22-4y32,求: (1)常数a,b;(2)正交变换的矩阵Q.
admin
2019-08-28
78
问题
二次型f(x
1
,x
2
,x
3
)=x
1
2
+ax
2
2
+x
3
2
-4x
1
x
2
-8x
1
x
3
-4x
2
x
3
经过正交变换化为标准形5y
1
2
+6y
2
2
-4y
3
2
,求:
(1)常数a,b;(2)正交变换的矩阵Q.
选项
答案
(1)令A=[*],则f(x
1
,x
2
,x
3
)=X
T
AX,矩阵A的特征值为λ
1
=5,λ
2
=b,λ
3
=-4, 由 [*] 从而[*],特征值为λ
1
=λ
2
=5,λ
3
=-4. (2)将λ
1
=λ
2
=5代入(λE-A)X=0,即(5E-A)X=0, 由5E-A=[*]得λ
1
=λ
2
=5对应的线性无关的特征向量为α
1
=[*],α
2
=[*] 将λ
3
=-4代入(λE-A)X=0,即(4E+A)X=0, 由4E+A=[*]得λ
3
=-4对应的线性无关的特征向量为α
3
=[*] 令β
1
=α
1
-[*],β
2
=α
2
-[*],β
3
=α
3
=[*] 单位化得 [*] 所求的正交变换矩阵为 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/XvJ4777K
0
考研数学三
相关试题推荐
设A是5×4矩阵,A=(α1,α2,α3,α4),若η1=(1,1,一2,1)T,η2=(0,1,0,1)T是Ax=0的基础解系,则A的列向量组的极大线性无关组可以是
设X1,X2,…,Xn是总体N(μ,σ2)的简单随机样本,记(Ⅰ)证明丁是μ2的无偏估计量;(Ⅱ)当μ=0,σ=1时,求DT.
设二维随机变量(X,Y)服从区域G上的均匀分布,其中G是由χ-y=0,χ+y=2与y=0所围成的三角形区域.(Ⅰ)求X的概率密度fx(χ);(Ⅱ)求条件概率密度fX|Y(χ|y).
(1989年)假设函数f(x)在[a,b]上连续.在(a,b)内可导,且f’(x)≤0.记证明在(a,b)内F’(x)≤0.
(2005年)以下四个命题中,正确的是()
(2002年)设函数f(x),g(x)在[a,b]上连续,且g(x)>0.利用闭区间上连续函数性质,证明存在一点ξ∈[a,b],使∫abf(x)g(x)dx=f(ξ)∫abg(x)dx.
设A=,E为3阶单位矩阵.求方程组Ax=0的一个基础解系;
设二次型f(x1,x2,x3)=XTAX=ax12+2x22-2x32+2bx1x3(b>0),其中二次型的矩阵A的特征值之和为1,特征值之积为-12.(1)求a,b的值;(2)利用正交变换将二次型,化为标准形,并写出所用的正交变换和对应的正交矩阵.
设n阶矩阵A正定,X=(x1,x2,…,xn)T.证明:二次型f(x1,x2,…,xn)为正定二次型.
对于随机变量X1,X2,…,X3,下列说法不正确的是().
随机试题
1951年底至1952年春,中国共产党在党政机关工作人员中开展的运动是()
管理方格图设计的维度包括()
生成原尿的有效滤过压等于
DSA图像采集,取25帧/秒的部位是
在外感咳嗽中,病程缠绵,久则导致肺阴亏耗的是
适合使用外汇期权作为风险管理手段的情形有()。
阿.费希尔认为在世界经济史中人类生产活动的发展有三个阶段,关于这三个阶段,下列说法错误的是()。
设口是方程x2+x+l=0的解,则4a5+5a4+3a3-2a2-3a3+3=()
Pleasegiveusyourreplyatyour(early)______convenience.
A、Happy.B、Unhappy.C、Unusual.D、Bored.C
最新回复
(
0
)