首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
二次型f(x1,x2,x3)=x12+ax22+x32-4x1x2-8x1x3-4x2x3经过正交变换化为标准形5y12+6y22-4y32,求: (1)常数a,b;(2)正交变换的矩阵Q.
二次型f(x1,x2,x3)=x12+ax22+x32-4x1x2-8x1x3-4x2x3经过正交变换化为标准形5y12+6y22-4y32,求: (1)常数a,b;(2)正交变换的矩阵Q.
admin
2019-08-28
39
问题
二次型f(x
1
,x
2
,x
3
)=x
1
2
+ax
2
2
+x
3
2
-4x
1
x
2
-8x
1
x
3
-4x
2
x
3
经过正交变换化为标准形5y
1
2
+6y
2
2
-4y
3
2
,求:
(1)常数a,b;(2)正交变换的矩阵Q.
选项
答案
(1)令A=[*],则f(x
1
,x
2
,x
3
)=X
T
AX,矩阵A的特征值为λ
1
=5,λ
2
=b,λ
3
=-4, 由 [*] 从而[*],特征值为λ
1
=λ
2
=5,λ
3
=-4. (2)将λ
1
=λ
2
=5代入(λE-A)X=0,即(5E-A)X=0, 由5E-A=[*]得λ
1
=λ
2
=5对应的线性无关的特征向量为α
1
=[*],α
2
=[*] 将λ
3
=-4代入(λE-A)X=0,即(4E+A)X=0, 由4E+A=[*]得λ
3
=-4对应的线性无关的特征向量为α
3
=[*] 令β
1
=α
1
-[*],β
2
=α
2
-[*],β
3
=α
3
=[*] 单位化得 [*] 所求的正交变换矩阵为 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/XvJ4777K
0
考研数学三
相关试题推荐
已知A是m×n矩阵,B是n×p矩阵,如AB=C,且r(C)=m,证明A的行向量线性无关.
设二维连续型随机变量(X,Y)在区域D上服从均匀分布,其中D={(x,y)|x+y|≤1,|x一y|≤1},求X的边缘密度fX(x)与在X=0条件下,关于Y的条件密度fY|X(y|0).
(2013年)设函数f(x)在[0,+∞)上可导,f(0)=0,且.证明:Ⅰ)存在a>0,使得f(A)=1;Ⅱ)对(Ⅰ)中的a,存在ξ∈(0,a),使得.
设向量组α1=(a,2,10)T,α2=(-2,1,5)T,α3=(-1,1,4))T,β=(1,b,c)T.试问:当a,b,c满足什么条件时(1)β可由α1,α2,α3线性表出,且表示唯一?(2)β不能由α1,α2,α3线性表出?(3)β可由α1
设A和B为可逆矩阵,X=为分块矩阵,则X-1=_______.
设3阶矩阵A的特征值为1,2,2,E为3阶单位矩阵,则|4A-1-E|=_______.
设3阶实对称矩阵A的特征值是1,2,3;矩阵A的属于特征值1,2的特征向量分别是α1=(-1,-1,1)T,α2=(1,-2,-1)T.求矩阵A.
设n阶矩阵A正定,X=(x1,x2,…,xn)T.证明:二次型f(x1,x2,…,xn)为正定二次型.
设A是n阶方阵,X是任意的n维列向量,B是任意的n阶方阵,则下列说法错误的是()
随机试题
根据以下资料,回答以下问题。截至2014年12月底,全国实有各类市场主体6932.22万户,比上年末增长14.35%,增速较上年同期增加4.02个百分点;注册资本(金)129.23万亿元,比上年末增长27.70%。其中,企业1819.28万户,个
What’sthematterwithyou?You________sopale.
气管异物易坠入哪侧主支气管,为什么?
胎儿心脏胚胎发育关键时期是
不是全口义齿患者复诊时常见的症状是
洋地黄中毒最常见的心电图表现是
甲请乙为其在丙家盗窃时望风,乙同意,某日晚,甲、乙按约定前往丙家,乙在门外望风,甲进入丙家后,见丙一人在家,便对丙实施暴力,抢劫了丙的1万元现金。对本案应如何认定?()
可行性研究分为投资机会研究、初步可行性研究、______和项目的评估决策四个工作阶段。
证券发行市场又称为证券次级市场。()
()的培训成果是可以衡量的。
最新回复
(
0
)