首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n阶矩阵A=(α1,α2,…,αn)的前n-1个列向量线性相关,后n-1个列向量线性无关,且α1+2α2+…+(n-1)αn-1=0,b=α1+α2+…+αn. (1)证明:方程组AX=b有无穷多个解; (2)求方程组AX=b的通解.
设n阶矩阵A=(α1,α2,…,αn)的前n-1个列向量线性相关,后n-1个列向量线性无关,且α1+2α2+…+(n-1)αn-1=0,b=α1+α2+…+αn. (1)证明:方程组AX=b有无穷多个解; (2)求方程组AX=b的通解.
admin
2019-08-28
94
问题
设n阶矩阵A=(α
1
,α
2
,…,α
n
)的前n-1个列向量线性相关,后n-1个列向量线性无关,且α
1
+2α
2
+…+(n-1)α
n-1
=0,b=α
1
+α
2
+…+α
n
.
(1)证明:方程组AX=b有无穷多个解;
(2)求方程组AX=b的通解.
选项
答案
(1)因为r(A)=n-1,又b=α
1
+α
2
+…+α
n
,所以[*]=n-1. 即r(A)=[*]=n-1<n,所以方程组AX=b有无穷多个解. (2)因为α
1
+2α
2
+…+(n-1)α
n-1
=0,所以α
1
+2α
2
+…+(n-1)α
n-1
+0α
n
=0, 即齐次线性方程组AX=0有基础解系ξ=(1,2,…,n-1,0)
T
, 又因为b=α
1
,α
2
,…,α
n
,所以方程组AX=b有特解η=(1,1,…,1)
T
, 故方程组AX=b的通解为 kξ+η=k(1,2,…,n-1,0)
T
+(1,1,…,1)
T
(k为任意常数).
解析
转载请注明原文地址:https://kaotiyun.com/show/VqJ4777K
0
考研数学三
相关试题推荐
已知级数条件收敛,则常数p的取值范围是
下列函数f(x)中其原函数及定积分∫-11f(x)dx都存在的是
设随机变量X和Y的联合分布是正方形G={(χ,Y}:1≤χ≤3,1≤y≤3}上的均匀分布.试求随机变量U=|X-Y|的概率密度p(u).
设随机变量X与Y相互独立,且均服从区间[0,3]上的均匀分布,则P{max(X,Y)≤1}=_______。
假设随机变量U在区间[-2,2]上服从均匀分布,随机变量试求(1)X和Y的联合概率分布;(2)D(X+Y).
对任意两个随机变量X和Y,若E(XY)=E(X).E(Y),则
(1992年)设曲线y=e-x(x≥0)(1)把曲线y=e-x,x轴,y轴和直线x=ξ(ξ>0)所围成平面图形绕z轴旋转一周,得一旋转体,求此旋转体体积V(ξ);求满足的a.(2)在此曲线上找一点,使过该点的切线与两个坐标轴所夹平面图形的面积最大,并求
设函数y=y(x)由参数方程
已知αi=(αi1,αi2…,αin)T(i=1,2,…,r;r<n)是n维实向量,且α1,α2,…,αr线性无关.已知β=(b1,b2,…,bn)T是线性方程组的非零解向量.试判断向量组α1,α2,…,αr,β的线性相关性.
在独立的伯努利试验中,若p为一次试验中成功的概率.以X记为第r次成功出现时的试验次数,则X是随机变量,取值为r,r+1,…,称为负二项分布,记为Nb(r,p),其概率分布为:P{X=k}=Ck-1r-1pr(1-p)k-r,k=r,r+1,….
随机试题
医疗机构施行特殊检查时
关于排卵,下列说法正确的是
女,65岁,10年前有黄疸、纳差,诊断为肝炎。近3个月来纳差、消瘦,肝区疼痛。查体:轻度黄疸,面部有蜘蛛痣,腹膨隆,肝肋下3cm、剑突下5cm,质硬、压痛。脾肋下3cm,移动性浊音阳性。临床上应首先考虑的是()
()指除非成交或由委托人取消,否则持续有效的交易指令。
甲产品月末在产品只计算原材料费用。该产品月初在产品原材料费用为3600元;本月发生的原材料费用2100元。原材料均在生产开始时一次投入。本月完工产品200件,月末在产品100件。据此计算的甲产品本月末在产品原材料费用是()元。
在中国古代建筑发展史中,()时期是中国古建筑体系大转变时期,使古建筑更秀丽、绚烂而富于变化,出现了各种复杂形式的殿阁楼台。
宋代瓷器出现了繁荣的局面,陶瓷生产遍及全国,南北各地都有名窑,其中以“汝、官、哥、________、定”五大名窑最负盛名。
下列合成词全属于动宾型的一组是()。
以转基因生物为直接食品或为原料加工生产的食品就是转基因食品。关于转基因食品,下列表述正确的是()。
ThereisprogresstowardapossibletreatmentforlungdiseasessuchasSARS(severeacuterespiratorysyndrome).Researchersha
最新回复
(
0
)