首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n阶矩阵A=(α1,α2,…,αn)的前n-1个列向量线性相关,后n-1个列向量线性无关,且α1+2α2+…+(n-1)αn-1=0,b=α1+α2+…+αn. (1)证明:方程组AX=b有无穷多个解; (2)求方程组AX=b的通解.
设n阶矩阵A=(α1,α2,…,αn)的前n-1个列向量线性相关,后n-1个列向量线性无关,且α1+2α2+…+(n-1)αn-1=0,b=α1+α2+…+αn. (1)证明:方程组AX=b有无穷多个解; (2)求方程组AX=b的通解.
admin
2019-08-28
91
问题
设n阶矩阵A=(α
1
,α
2
,…,α
n
)的前n-1个列向量线性相关,后n-1个列向量线性无关,且α
1
+2α
2
+…+(n-1)α
n-1
=0,b=α
1
+α
2
+…+α
n
.
(1)证明:方程组AX=b有无穷多个解;
(2)求方程组AX=b的通解.
选项
答案
(1)因为r(A)=n-1,又b=α
1
+α
2
+…+α
n
,所以[*]=n-1. 即r(A)=[*]=n-1<n,所以方程组AX=b有无穷多个解. (2)因为α
1
+2α
2
+…+(n-1)α
n-1
=0,所以α
1
+2α
2
+…+(n-1)α
n-1
+0α
n
=0, 即齐次线性方程组AX=0有基础解系ξ=(1,2,…,n-1,0)
T
, 又因为b=α
1
,α
2
,…,α
n
,所以方程组AX=b有特解η=(1,1,…,1)
T
, 故方程组AX=b的通解为 kξ+η=k(1,2,…,n-1,0)
T
+(1,1,…,1)
T
(k为任意常数).
解析
转载请注明原文地址:https://kaotiyun.com/show/VqJ4777K
0
考研数学三
相关试题推荐
某厂家生产的每台仪器,以概率0.7可以直接出厂,以概率0.3需进一步调试,经调试后以概率0.8可以出厂,以概率0.2定为不合格产品不能出厂.现该厂新生产了n(n≥2)台仪器(假设各台仪器的生产过程相互独立),求(1)全部能出厂的概率α;
从0,1,2,…,9等10个数字中任意选出3个不同的数字,求下列事件的概率:A1={三个数字中不含0和5};A2={三个数字中不含0或5}.
随机事件A,B,C相互独立,且P(A)=P(B)=P(C)=,则P(AC|A∪B)=_______.
若二事件A和B同时出现的概率P(AB)=0,则
设随机变量(X,Y)在圆域χ2+y2≤r2上服从联合均匀分布.(1)求(X,Y)的相关系数ρ;(2)问X和Y是否独立?
设随机变量X和Y的联合概率分布为则X2和Y2的协方差cov(X2,Y2)=_______.
(2005年)以下四个命题中,正确的是()
设矩阵且方程组Ax=β无解.求方程组ATAx=ATβ的通解.
设有齐次线性方程组试问a取何值时,该方程组有非零解,并求出其通解.
设总体X和Y相互独立,且分别服从正态分布N(0,4)和N(0,7),X1,X2,…,X8和Y1,Y2,…,Y14是分别来自总体X和Y的简单随机样本,则统计量的数学期望和方差分别为______.
随机试题
可倾机用虎钳的缺点是强度较差,故只能采用较小的铣削用量。
VoltsFromtheSky①Lightninghascausedaweandwondersinceoldtimes.AlthoughBenjaminFranklindemonstratedlightning
唾液分泌的调节是纯神经反射性的,包括条件反射和非条件反射。
某地山村,不少小儿生后表现智力低下,对声音无反应,运动障碍,有的皮肤粗糙,身材矮小,四肢粗短。为预防此病,下列措施哪项不正确
可转换公司债券应()至少公告一次跟踪评级报告。
A、7/3B、22/9C、23/9D、8/3D将17/3改写为51/9,则括号中应填入一个分母为9的分数,考虑这列数的分子。5×2+1=11,11×2+2=x,2x+3=51,51×2+4=106,可知x=24刚好满足。即括号中应填24/9,选D。
选择,不要________次成功,这要有赖于漫漫人生路上感性的积聚与理性的升华。感性的积聚使人聪敏,理性的升华使人睿智。这种积聚与升华到了家,那么梦想便不再是________。填入画横线部分最恰当的一项是:
下列选项中,属于黑社会性质组织的特征的是()
某街道综合治理委员会共有6名委员:F、G、H、I、M、P。其中每一位委员,在综合治理委员会下属的3个分委会中,至少要担任其中一个分委会的委员,每个分委会由3位不同的委员组成。已知的信息如下:6名委员中有一位分别担任3个分委会的委员。F不和G在同一个分委会任
A、Hethoughtshepreferredtostudyalone.B、Hethoughtshehadmadearrangementstostudywith.C、Hehadtoldherthathehadd
最新回复
(
0
)