设f(χ)在[a,b]上可导,且f′+(a)与f′-(b)反号,证明:存在ξ∈(a,b)使得f′(ξ)=0.

admin2016-10-21  21

问题 设f(χ)在[a,b]上可导,且f′+(a)与f′-(b)反号,证明:存在ξ∈(a,b)使得f′(ξ)=0.

选项

答案由极限的不等式性质和题设知,存在δ>0使得a+δ<b-δ,且 [*] 于是f(a+δ)>f(a),f(b-δ)>f(b). 这表明f(χ)在[a,b]上的最大值必在(a,b),内某点取到,即存在ξ∈(a,b)使得f(ξ)=[*]f(χ).由费马定理知f′(ξ)=0.

解析
转载请注明原文地址:https://kaotiyun.com/show/NPt4777K
0

最新回复(0)