首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是秩为n一1的n阶矩阵,α1,α2是方程组Ax=0的两个不同的解向量,则Ax=0的通解必定是 ( )
设A是秩为n一1的n阶矩阵,α1,α2是方程组Ax=0的两个不同的解向量,则Ax=0的通解必定是 ( )
admin
2018-09-20
39
问题
设A是秩为n一1的n阶矩阵,α
1
,α
2
是方程组Ax=0的两个不同的解向量,则Ax=0的通解必定是 ( )
选项
A、α
1
+α
2
B、kα
1
C、k(α
1
+α
2
)
D、k(α
1
-α
2
)
答案
D
解析
因为通解中必有任意常数,故(A)不正确.由n一r(A)=1知Ax=0的基础解系由一个非零向量构成.但α
1
,α
1
+α
2
与α
1
一α
2
中哪一个一定是非零向量呢?
已知条件只是说α
1
,α
2
是两个不同的解,那么α
1
可以是零解,因而kα
1
可能不是通解.如果α
1
=一α
2
≠0,则α
1
,α
2
是两个不同的解,但α
1
+α
2
=0,即两个不同的解不能保证α
1
+α
2
≠0,因此排除(B),(C).由于α
1
≠α
2
,必有α
1
一α
2
≠0.可见(D)正确.
转载请注明原文地址:https://kaotiyun.com/show/NRW4777K
0
考研数学三
相关试题推荐
曲线y=的渐近线方程为_______.
若任一n维非零向量都是,;阶矩阵A的特征向量,则A是数量矩阵.
设A,B均是n阶矩阵,且秩r(A)+r(B)<n,证明:A,B有公共的特征向量.
设3阶实对称矩阵A的特征值,λ1=1,λ2=2,λ3=-2,且α1=(1,-1,1)T是A的属于λ1的一个特征向量.记B=A5-4A3+E,其中E为3阶单位矩阵.(Ⅰ)验证α1是矩阵B的特征向量,并求B的全部特征值与特征向量;(Ⅱ)求矩阵B.
设A是3阶矩阵,且各行元素之和都是5,则A必有特征向量_______.
下列矩阵中不能相似对角化的是
设二次型f(x1,x2,x3)=ax12+ax22+(a-1)x32+2x1x3-2x2x3,(Ⅰ)求二次型f的矩阵的所有特征值;(Ⅱ)若二次型f的规范形为y12+y22,求a的值.
设3阶矩阵A的特征值λ=1,λ=2,λ=3对应的特征向量依次为α1=(1,1,1)T,α2=(1,2,4)T,α3=(1,3,9)T.(Ⅰ)将向量β=(1,1,3)T用α1,α2,α3线性表出:(Ⅱ)求Anβ.
已知A=,A*是A的伴随矩阵,求A*的特征值与特征向量.
设n阶矩阵A=(α1,α2,…,αn)的前n一1个列向量线性相关,后n一1个列向量线性无关,且α1+2α2…+(n一1)αn一1=0,b=α1+α2+…+αn.求方程组AX=b的通解.
随机试题
高效液相色谱法用于定量的参数是
缺陷返修部位的焊缝表面,应修磨使之与原焊缝基本一致,并且圆滑过渡,以减少应力集中提高抗裂性能。
简述环境污染侵权的归责原则与构成要件。
急性感染性心内膜炎最常见的致病菌是
脾失健运,水湿内停,可致邪热犯肺,煎津为痰,多见
2014年修订的环境保护法,“保护环境”被确立为我国的一项:()
要打开图标所代表的对象,正确的操作是()。
下列论述属于定性研究特点的是( )。
上述的咨询片段所采用的技术最有可能的是()。在咨询的最后几句话中,心理咨询师主要是帮助求助者()。
Thisisonlya_____agreement:nothingseriousconcludedyetbyfar.
最新回复
(
0
)