首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为n阶可逆方阵,k为非零常数,则有( ).
设A为n阶可逆方阵,k为非零常数,则有( ).
admin
2021-07-27
36
问题
设A为n阶可逆方阵,k为非零常数,则有( ).
选项
A、(kA)
-1
=kA
-1
B、(kA)
T
=kA
T
C、|kA|=k|A|
D、(kA)
*
=kA
*
答案
B
解析
非零常数乘可逆矩阵后再求逆矩阵,及非零常数乘矩阵后再转置,非零常数乘矩阵后再取行列式,非零常数乘矩阵后再求伴随矩阵等,经常会遇到将常数提出矩阵的问题,相关的结论正确的是:由于(kA)(k
-1
A
-1
)=kk
-1
(AA
-1
)=E,所以有(kA)
-1
=k
-1
A
-1
.由于(kA)
T
=(ka
ij
)
T
=(ka
ij
)=k(a
ij
),其中i,j=1,2,…,n,所以有(kA)
T
=kA
T
.又|kA|=k
n
|A |,有(kA)
*
=|kA|(kA)
-1
=k
n
|A|(k
-1
A
-1
)=k
n-1
|A|A
-1
,所以有(kA)
*
=k
n-1
A
*
。因此,对照各选项,故选(B).
转载请注明原文地址:https://kaotiyun.com/show/NTy4777K
0
考研数学二
相关试题推荐
已知线性方程组的通解为[2,1,0,1]T+k[1,一1,2,0]T.记a=[a1j,a2j,a3j,a4j]T,j=1,2,…,5.问:(1)α4能否由α1,α2,α3,α5线性表出,说明理由;(2)α4能否由α1,α2,α3线
求微分方程y"+2y’一3y=e一3x的通解.
设f(a)=f(b)=0,∫abf2(x)dx=1,f’(x)∈C[a,b].证明:∫abf’2(x)dx∫abx2f2(x)dx≥
设A,B均为n阶矩阵,则必有()
设α1=(1,1,1),α2=(1,2,3),α3=(1,3,t).(1)问当t为何值时,向量组α1,α2,α3线性无关?(2)问当t为何值时,向量组α1,α2,α3线性相关?(3)当α1,α2,α3线性相关时,将α3表示为α1和α2的线
设n维列向量组α1,α2,…,αn线性无关,P为n阶方阵,证明:向量组Pα1,Pα2,…,Pαn线性无关|P|≠0.
设A是4×5矩阵,ξ1=[1,一1,1,0,0]T,ξ2=[一1,3,一1,2,0]T,ξ3=[2,1,2,3,0]T,ξ4=[1,0,一1,l,-2]T都是齐次线性方程组Ax=0的解,且Ax=0的任一解向量均可由ξ1,ξ2,ξ3,ξ4线性表出,若k1,k
已知D≠0.求常数A,B,C,D.
设,其中a,b为常数,则().
设矩阵A与B相似,且(1)求a,b的值.(2)求可逆矩阵P,使P-1AP=B.
随机试题
9个月男孩,因其尚未出牙就诊,最恰当的处理是
某市政协扎实推进“请你来协商”平台建设,开展“请你来协商”重点活动,通过面对面协商、点对点交流,不少意见建议得到采纳并转化为工作举措。从实质民主角度看,“请你来协商”平台()。
Therearemomentsinlifewhenyou_______【C1】someonesomuchthatyoujustwanttopickthemfromyourdreamsandhugthemfor
下列是右心衰竭致心源性水肿时的体征,除了
有一名颅内压增高病人,持续颅内压增高导致病理生理紊乱,但应除外
关于工业小型汽轮机转子安装技术要点的说法中,正确的有()。
下列不属于系统风险的是()
内容、设计、编校质量均合格,印刷装订质量不合格的成品图书,其总体质量等级为()。
已知数列{log3(an+1)}(a∈N*)为等差数列,a2=2,a4=26,则数列{an}的通项公式为______.
揭示了“教师的期望使学生的学习成绩和行为表现发生积极变化”这一原理的效应称为()。
最新回复
(
0
)