首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为n阶可逆方阵,k为非零常数,则有( ).
设A为n阶可逆方阵,k为非零常数,则有( ).
admin
2021-07-27
61
问题
设A为n阶可逆方阵,k为非零常数,则有( ).
选项
A、(kA)
-1
=kA
-1
B、(kA)
T
=kA
T
C、|kA|=k|A|
D、(kA)
*
=kA
*
答案
B
解析
非零常数乘可逆矩阵后再求逆矩阵,及非零常数乘矩阵后再转置,非零常数乘矩阵后再取行列式,非零常数乘矩阵后再求伴随矩阵等,经常会遇到将常数提出矩阵的问题,相关的结论正确的是:由于(kA)(k
-1
A
-1
)=kk
-1
(AA
-1
)=E,所以有(kA)
-1
=k
-1
A
-1
.由于(kA)
T
=(ka
ij
)
T
=(ka
ij
)=k(a
ij
),其中i,j=1,2,…,n,所以有(kA)
T
=kA
T
.又|kA|=k
n
|A |,有(kA)
*
=|kA|(kA)
-1
=k
n
|A|(k
-1
A
-1
)=k
n-1
|A|A
-1
,所以有(kA)
*
=k
n-1
A
*
。因此,对照各选项,故选(B).
转载请注明原文地址:https://kaotiyun.com/show/NTy4777K
0
考研数学二
相关试题推荐
求微分方程y"+2y’一3y=e一3x的通解.
设A是m×n阶矩阵,则下列命题正确的是().
设A是三阶矩阵,其中a11≠0,Aij=aij(i=1,2,3,j=1,2,3),则|2AT|=()
设α1=(1,1,1),α2=(1,2,3),α3=(1,3,t).(1)问t为何值时,向量组α1,α2,α3线性无关?(2)当t为何值时,向量组α1,α2,α3线性相关?(3)当α1,α2,α3线性相关时,将α1表示为α1和α2的线性组合.
设奇函数f(χ)在[-1,1]上二阶可导,且f(1)=1,证明:(1)存在ξ∈(0,1),使得f′(ξ)=1;(2)存在η∈(-1,1),使得f〞(η)+f′(η)=1.
问λ为何值时,线性方程组有解,并求出解的一般形式.
已知y1=xex+e2x和y2=xex+e一x是二阶常系数非齐次线性微分方程的两个解,则此方程为()
微分方程的通解是(其中C为任意常数)()
设A是5×4矩阵,A=(α1,α2,α3,α4),若η1=(1,1,-2,1)T,η2=(0,1,0,1)T是Aχ=0的基础解系.则A的列向量组的极大线性无关组可以是
微分方程y’’+y=x2+1+sinx的特解形式可设为()
随机试题
行政机关实施行政指导,应当:()
肝昏迷病人前驱期(一期)最早的临床表现是
儿童烧伤面积计算法,哪一项是正确的:
某医院对10名氟作业工人分别编号,分为10组,并测定每名工人在工前、工中和工后3个时间点的尿氟含量。检验假设H0为
低温保冷工程中常用的绝热材料有()。
项目结构分解并没有统一的模式,但应结合项目的特点并考虑()。
(2016)明确的共同目标是班级管理的指南,班级管理的目标就是要把班级打造成四个共同体,即“学习共同体、文化共同体、()”。
下列选项中,具有填补法律空白和漏洞作用的法律方法包括()。(2012年真题)
Look!The___________upatthelake___________justbreathtaking.
Accordingtothenews,theplanecrashed______.
最新回复
(
0
)