首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
证明对于任何m×n实矩阵A,ATA的负惯性指数为0.如果A秩为n,则ATA是正定矩阵.
证明对于任何m×n实矩阵A,ATA的负惯性指数为0.如果A秩为n,则ATA是正定矩阵.
admin
2017-10-21
74
问题
证明对于任何m×n实矩阵A,A
T
A的负惯性指数为0.如果A秩为n,则A
T
A是正定矩阵.
选项
答案
证明A
T
A的特征值都不为负数,并且在A秩为n时A
T
A的特征值都大于0. 设λ是A的一个特征值,η是属于它的一个特征向量,即有A
T
Aη=λη,于是η
T
A
T
Aη=λη
T
η,即 (Aη,Aη)=λ(η,η).则λ=(λη,Aη)/(η,η)≥0. 如果A秩为n,则AX=0没有非零解,从而Aη≠0,(Aη,A0)>0,因此 λ=(Aη,Aη)/(η,η)>0.
解析
转载请注明原文地址:https://kaotiyun.com/show/NdH4777K
0
考研数学三
相关试题推荐
证明:对任意的x,y∈R且x≠y,有.
设A是m×n矩阵,若ATA=0,证明:A=0.
判断级数的敛散性,若收敛是绝对收敛还是条件收敛?
设α1,α2,α3为四维列向量组,α1,α2线性无关,α3=3α1+2α2,A=(α1,α2,α3),求AX=0的一个基础解系.
设A,B为n阶矩阵.(1)是否有AB~BA;(2)若A有特征值1,2,…,n,证明:AB~BA.
|A|是n阶行列式,其中有一行(或一列)元素全是1.证明:这个行列式的全部代数余子式的和等于该行列式的值.
设二次型f(x1,x2,x3)=2(a1x1,a2x2,a3x3)2+(b1x1,b2x2,b3x3)2,记若α,β正交且均为单位向量,证明f在正交变换下的标准形为2y12+y22。
设随机变量X1,X2,X3,X4相互独立且同分布,P(Xi=0)=0.6,P(Xi=1)=0.4(i=1,2,3,4)。求行列式的概率分布。
设A是n阶矩阵,A*是A的伴随矩阵,若|A|=a,则行列式等于().
设A,B为三阶相似矩阵,且|2E+A|=0,λ1=1,λ2=一1为B的两个特征值,则行列式|A+2AB|=____________。
随机试题
男性,50岁,呕吐、腹泻2天,意识模糊、烦躁不安半天急诊入院。查体:BP110/70mmHg,神志恍惚,巩膜中度黄染,颈部可见数枚蜘蛛痣。心肺未见异常,腹软,肝肋下未触及,脾肋下3cm,双上肢散在出血点,Hb90g/L,WBC3.22×109/L,血糖7.
张某,男,45岁,颅脑外伤后昏迷。需鼻饲,在插管过程中,病人出现呛咳、呼吸困难,护士应
事故发生后,因抢救人员、疏导交通等原因需要移动现场物件时,应( )。
一般来说,分公司是法律主体,但不是会计主体。()
一般资料:求助者,男性,33岁,大学教师。案例介绍:求助者博士毕业后,留校任教,由于工作出色,29岁时就破格评为副教授。求助者一直全心追求事业,无暇顾及个人问题。直到一年前才经人介绍结识了现在的女友。随着了解的加深,求助者觉得女友各方面都很优秀,
强化党内监督,是推进全面从严治党的重要保障。
对于大多数中国人而言,印度是一个充满着巨大反差、令人困惑不解的国家;宽容与非暴力的理念从这里走向世界,妇女儿童却在暴乱中被活活烧死;走在亚洲最早西化城市街头的人们,却有着百年前的卫生陋习;接受英语教育的印度年轻人在硅谷成为创新发动机,他们母国的城市里却有数
Givemethesalt,______?
A、Thewomanapprovesofthemovement.B、Themovementdoeshaveharmtothesociety.C、Thewomandoesn’tcarethatmovement.D、Th
SomeSuggestionsforPessimists[A]Obesityandsmokingmaybethemostconspicuouscausesofillnessinthiscountry,butphysi
最新回复
(
0
)