首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
若n阶矩阵A=[α1,α2,…,αn-1,αn]的前n-1个列向量线性相关,后,n-1个列向量线性无关,β=α1+α2+…+αn.证明: 若(k1,k2,…,kn)T是Ax=B的任一解,则kn=1.
若n阶矩阵A=[α1,α2,…,αn-1,αn]的前n-1个列向量线性相关,后,n-1个列向量线性无关,β=α1+α2+…+αn.证明: 若(k1,k2,…,kn)T是Ax=B的任一解,则kn=1.
admin
2017-06-14
97
问题
若n阶矩阵A=[α
1
,α
2
,…,α
n-1
,α
n
]的前n-1个列向量线性相关,后,n-1个列向量线性无关,β=α
1
+α
2
+…+α
n
.证明:
若(k
1
,k
2
,…,k
n
)
T
是Ax=B的任一解,则k
n
=1.
选项
答案
因为α
1
,α
2
,…,α
n-1
线性相关,故存在不全为零的实数l
1
,l
2
,…,l
n-1
,使 l
1
α
1
+l
2
α
2
+…+lα
n-1
α
n-1
=0,即 [*] 又因r(A)=n-1,故(l
1
,…,l
n-1
,0)
T
是Ax=0的基础解系. 又 [*] = α
1
+α
2
+…+α
n
=β, 故(1,1,…,1)
T
是Ax=β的一个特解,于是Ax=β通解是 (1,1,…,1)
T
+k(l
1
,l
2
,…,l
n-1
,0). 因此,当(k
1
,…,k
n
)
T
是Ax=β的解时,必有k
n
=1.
解析
转载请注明原文地址:https://kaotiyun.com/show/Ndu4777K
0
考研数学一
相关试题推荐
设有向量组(I):α1=(1,0,2)T,α2=(1,1,3)T,α3=(1,-1,a+2)T和向量组(Ⅱ):β1=(1,2,a+3)T,β2=(2,1,a+6)T,β3=(2,1,a+4)T.当a为何值时,向量组(I)与(Ⅱ)不等价?
求函数f(x,y)=(y+x3/3)ex+y的极值。
[*]
在电炉上安装了四个温控器,其显示温度的误差是随机的,在使用过程中,只要有两个温控器显示的温度不低于临界温度to,电炉就断电,以E表示事件“电炉断电”,设T(1)≤T(2)≤T(3)≤T(4)为四个温控器显示的按递增顺序排列的温度值,则事件E等于()
已知齐次线性方程组其中,试讨论a1,a2,…,an和b满足何种关系时,(Ⅰ)方程组仅有零解;(Ⅱ)方程组有非零解,在有非零解时,求此方程组的一个基础解系.
函数f(u,v)由关系式f[xg(y),Y]=x+g(y)确定,其中函数g(y)可微,且g(y)≠0,则=_________.
设二次型f(x1,x2,x3)=XTAX=ax12+222+(-232)+2bx32(b>0),其中二次矩阵A的特征值之和为1,特征值之积为-12.(Ⅰ)求a,b的值;(Ⅱ)利用正交变换将二次型f化为标准形,并写出所用的正交变换
设λ0是n阶矩阵A的特征值,且齐次线性方程组(λ0E-A)X=0的基础解系为η1,η2,则A的属于λ0的全部特征向量为().
已知α1=(1,4,0,2)T,α2=(2,7,1,3)T,α3=(0,1,-1,a)T,β=(3,10,b,4)T.a,b取何值时,β可由α1,α2,α3线性表出?并写出此表示式.
随机试题
关于炎症的阐述,错误的是
在健康行为中,属于预警行为的是()
风险发生的可能性不大,或者发生后造成的损失不大,一般不影响项目的可行性,则这种风险可定义为()。
技术分析的缺点是( )。
下列各项中,不属于相关信息特点的有()。
在管理策略上,现代人力资源管理更注重()
中小学作业负担重的教育调查研究,说明研究题目、研究问题、取样方法、研究工具和编制方法、资料收集的方法和分析处理的方法。[北京师范大学2018年研]
下列关于中国人民政治协商会议的表述,正确的有()。
A、Generallyspeaking,workgetsmucheasierafter40.B、Generallyspeaking,workgetsmuchharderafter40.C、Ageandworkaren
A------railwayB------railtrackC------railwaysystemD------expresstrainE------throughtrainF------stoppingtrainG------ex
最新回复
(
0
)