首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
求二元函数z=f(x,y)=x2y(4一x—y)在由直线x+y=6,x轴和y轴所围成的闭合区域D上的极值、最大值与最小值.
求二元函数z=f(x,y)=x2y(4一x—y)在由直线x+y=6,x轴和y轴所围成的闭合区域D上的极值、最大值与最小值.
admin
2015-08-14
71
问题
求二元函数z=f(x,y)=x
2
y(4一x—y)在由直线x+y=6,x轴和y轴所围成的闭合区域D上的极值、最大值与最小值.
选项
答案
由方程组[*] 得x=0(0≤y≤6)及点(4,0),(2,1).而点(4,0)及线段x=0(0≤y≤6)在D的边界上,只有点(2,1)在D内部,可能是极值点. f
xx
"=8y一6xy一2y
2
,f
xy
"=8x一3x
2
一4xy,f
yy
"=一2x
2
. 在点(2,1)处,[*] 且A<0,因此点(2,1)是z=f(x,y)的极大值点,极大值f(2,1)=4. 在D的边界x=0(0≤y≤6)及y=0(0≤x≤6)上,f(x,y)=0.在边界x+y=6上,y=6一x 代入f(x,y)中得,z=2x
3
一12x
2
(0≤x≤6). 由z’=6x
2
一24x=0得x=0,x=4.在边界x+y=6上对应x=0,4,6处z的值分别为: z|
x=0
=2x
3
一12x
2
|
x=0
=0,z|
x=4
=2x
3
—12x
2
|=一64,z|
x=6
=2x
3
—12x
2
|
x=6
=0. 因此知z=f(x,y)在边界上的最大值为0,最小值为f(4,2)=一64. 将边界上最大值和最小值与驻点(2,1)处的值比较得,z=f(x,y)在闭区域D上的最大值为f(2,1)=4,最小值为f(4,2)=一64.
解析
转载请注明原文地址:https://kaotiyun.com/show/Ng34777K
0
考研数学二
相关试题推荐
函数z=f(x,y)的全增量△z=(2x-3)△x+(2y+4)△y+且f(0,0)=0.求z在x2+y2=25上的最值。
函数z=f(x,y)的全增量△z=(2x-3)△x+(2y+4)△y+且f(0,0)=0.求z的极值。
设常数p>1.证明级数收敛。
设0<a1<π,且an+1=sinan,证明:存在,并求此极限;
设A为n阶矩阵且r(A)=n-1.证明:存在常数k,使得(A*)2=kA*.
设A是m×s阶矩阵,B是s×n阶矩阵,且r(B)=r(AB).证明:方程组BX=0与ABX=0是同解方程组.
一台设备由三大部分构成,在设备运转中各部件需要调整的概率相应为0.10,0.20和0.30,假设各部件的状态相互独立,以X表示同时需要调整的部件数.试求X的概率分布、数学期望E(X)和方差D(X).
已知一抛物线过Ox轴上两点A(1,0)、B(3,0),记0≤x≤1时,抛物线与Ox轴、Oy轴围成的平面图形为S1,在1≤x≤3上抛物线与Ox轴围成的平面图形为S2.证明:S1与S2的面积相等;
计算曲线积分I=∮L,其中L是以点(1,0)为圆心,R为半径的圆周,取逆时针方向(R≠1).
早晨开始下雪整天不停,中午一扫雪车开始扫雪,每小时扫雪体积为常数,到下午2点共扫雪2km,到下午4点又扫雪1km,问降雪是什么时候开始的?
随机试题
在二腹肌三角(下颌下三角)内,下颌舌骨肌和舌骨舌肌之间自下向上有()
技术上或经济上不宜继续使用的旧资产,用新资产更换或用先进的技术对原设备进行局部改造指的是__________。
平胃散的组成药味是异功散的组成药味是
烧结属于铁前生产工序,主要为高炉生产提供烧结矿和球团矿。C烧结厂共有生产、设备、安全、综合办4个职能科室,第一烧结车间、第二烧结车间、第三烧结车间、第四烧结车间、原料车问、环保车间、仪器车间、维修车间共8个车间;主要生产设备有烧结机5台,烧结点火炉5台,主
关于建设单位可以书面授权材料取样和送检见证人的单位是()。
伪造会计凭证,是指用涂改、挖补等手段来改变会计凭证的真实内容,歪曲事实真相的行为。()
下列不属于境外主要股票价格指数的是()。
《义务教育地理课程标准(2011年版)》规定:“义务教育地理课程的总目标是:掌握基础的地理知识,获得基本的地理技能和方法,了解环境与发展问题,增强爱国丰义情感,初步形成全球意识和可持续发展观念。”一般从知识与技能、过程与方法、情感态度与价值观三个方面来表述
(2011年第17题)1971年,迪斯尼乐园的路径设计获得了“世界最佳设计”奖,设计师格罗培斯却说,“其实那不是我的设计”。原因是在迪斯尼乐园主体工程完工后,格罗培斯暂停修筑乐园里的道路,并在空地上撒上草种。五个月后,乐园里绿草茵茵,草地上被游客踏出了不少
ThecitizensofFranceareonceagaintakingapastingontheopedpages.Theirfailingthistimeisnotthattheyarecheese-ea
最新回复
(
0
)