首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
求二元函数z=f(x,y)=x2y(4一x—y)在由直线x+y=6,x轴和y轴所围成的闭合区域D上的极值、最大值与最小值.
求二元函数z=f(x,y)=x2y(4一x—y)在由直线x+y=6,x轴和y轴所围成的闭合区域D上的极值、最大值与最小值.
admin
2015-08-14
70
问题
求二元函数z=f(x,y)=x
2
y(4一x—y)在由直线x+y=6,x轴和y轴所围成的闭合区域D上的极值、最大值与最小值.
选项
答案
由方程组[*] 得x=0(0≤y≤6)及点(4,0),(2,1).而点(4,0)及线段x=0(0≤y≤6)在D的边界上,只有点(2,1)在D内部,可能是极值点. f
xx
"=8y一6xy一2y
2
,f
xy
"=8x一3x
2
一4xy,f
yy
"=一2x
2
. 在点(2,1)处,[*] 且A<0,因此点(2,1)是z=f(x,y)的极大值点,极大值f(2,1)=4. 在D的边界x=0(0≤y≤6)及y=0(0≤x≤6)上,f(x,y)=0.在边界x+y=6上,y=6一x 代入f(x,y)中得,z=2x
3
一12x
2
(0≤x≤6). 由z’=6x
2
一24x=0得x=0,x=4.在边界x+y=6上对应x=0,4,6处z的值分别为: z|
x=0
=2x
3
一12x
2
|
x=0
=0,z|
x=4
=2x
3
—12x
2
|=一64,z|
x=6
=2x
3
—12x
2
|
x=6
=0. 因此知z=f(x,y)在边界上的最大值为0,最小值为f(4,2)=一64. 将边界上最大值和最小值与驻点(2,1)处的值比较得,z=f(x,y)在闭区域D上的最大值为f(2,1)=4,最小值为f(4,2)=一64.
解析
转载请注明原文地址:https://kaotiyun.com/show/Ng34777K
0
考研数学二
相关试题推荐
已知U~U(0,1),找一个单调递增连续函数g(x)使得X=g(U)具有概率密度,这里a>-1为常数,则g(U)=()。
设矩阵B=,矩阵A~B,则r(A-E)+r(A-3E)=()。
设在区间(-∞,+∞)内f(x)与g(x)均可导,且f(x)<g(x),a,b,x0都是实数,则()。
设随机变量X,Y,Z相互独立,且均服从区间(0,1)上的均匀分布,令U=YZ,求:U的概率密度。
设A=,α1=,向量α2,α3满足Aα2=α1,A2α3=α1。求向量α2,α3。
设A是m×n阶矩阵,且非齐次线性方程组AX=b满足r(A)=r()=r<n.证明:方程组AX=b的线性无关的解向量的个数最多是n-r+1个.
若矩阵A=相似于对角矩阵,试确定常数a的值,并求可逆矩阵P使P-1AP=.
一台设备由三大部分构成,在设备运转中各部件需要调整的概率相应为0.10,0.20和0.30,假设各部件的状态相互独立,以X表示同时需要调整的部件数.试求X的概率分布、数学期望E(X)和方差D(X).
(Ⅰ)叙述二元函数z=f(x,y)在点(x0,y0)处可微及微分的定义;(Ⅱ)证明下述可微的必要条件定理:设z=f(x,y)在点(x0,y0)处可微,则f’x(x0,y0)与f’y(x0,y0)都存在,且=f’x(x0,y0)△x+f’y(x0,
椭圆所围成平面图形的面积是________,椭圆所围图形绕x轴旋转一周的立体体积是________.
随机试题
(2018年省属)据有关调查,我国中学阶段青少年学生出现苦闷情绪时,除了“闷在心里,不与别人说”的学生之外,向伙伴求助者最多,占32%;向父母求助者次之,占13%;向教师求助者最少,只占4%。从这一数据可以看出学生同辈群体对青少年学生的心理健康具有(
下列选项中,导致多器官功能障碍综合征最常见的病因是()
偏差分析最常用的方法是()。
一般台阶式是()的地面规划形式。
根据《招标投标法》的规定,自招标文件开始发出之日至投标人提交投标文件截止之日的期限不得短于( )日。
组织部门接到举报,表示某国有企业单位负责人胡某在任职期间有违法行为,经过该地区财政、审计、统计方面组成的联合调查组的全面考察,发现:(1)该公司设置大小两套账,大账对外,小账对内;(2)两个月前,打击压制坚持原则的会计工作人员郑某,将其
在经济增长理论中,()特别强调技术进步的内生性质,即认为技术进步由经济体系内部因素决定,并且是与经济增长相互促进的。
IP地址块211.64.0.0/11的子网掩码可写为()。
SomethingMenDoNotLiketoDoEricBrownhatesshopping."It’sjustnotenjoyabletome,"saidthe28-year-old.Chicagomanwh
Everytimeyoutrytoansweraquestionthataskswhy,youengageintheprocessofcausalanalysis—youattempttodetermineac
最新回复
(
0
)