首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
曲面z=13-x2-y2将球面x2+y2+z2=25分成三部分,试求这三部分曲面的面积之比.
曲面z=13-x2-y2将球面x2+y2+z2=25分成三部分,试求这三部分曲面的面积之比.
admin
2022-07-21
104
问题
曲面z=13-x
2
-y
2
将球面x
2
+y
2
+z
2
=25分成三部分,试求这三部分曲面的面积之比.
选项
答案
先求曲面的交线,联立两个曲面方程得z
2
-z-12=0,即z=-3或z=4.因此交线有两条,分别为 [*] 记球面在平面z=4上方的部分为S
1
,夹在平面z=-3和z=4之间的部分为S
2
,剩下的部分即为S
3
.三者的总面积为球面面积为100π,故只需计算出两部分面积即可. 曲面S
1
与S
3
在xOy面的投影区域分别为 σ
1
={(x,y)|x
2
+y
2
≤9},σ
3
={(x,y)|x
2
+y
2
≤16} 球面上的微元 [*] 因此,用第一类曲面积分计算S
1
的面积,并用极坐标计算面积,得 [*] 同理S
3
的面积为 [*] 所以S
2
=100π-10π-20π=70π.S
1
,S
2
,S
3
的面积之比为10π:70π:20π=1:7:2.
解析
转载请注明原文地址:https://kaotiyun.com/show/dRR4777K
0
考研数学三
相关试题推荐
(1)设f(x)在[0,2]上可导,且|f’(x)|≤M,又f(x)在(0,2)内至少有一个零点,证明:|f(0)|+|f(2)|≤2M.(2)设f(x)在[s,b]上二阶可导,|f’’(x)|≤M,又f(x)在(a,b)内能取到最小值,证明:|f’(a
设函数f(x)二阶可导,且f’(x)>0,f’’(x)>0,△y=f(x+△x)-f(x),其中△x<0,则().
设f(x,y)在点(0,0)的邻域内连续,F(t)==_______.
设连续函数f(x)满足f(x)=∫02xdt+ex,则f(x)=_______.
设二元函数f(x,y)=|x-y|φ(x,y),其中φ(x,y)在点(0,0)处的某邻域内连续.证明:函数f(x,y)在点(0,0)处可微的充分必要条件是φ(0,0)=0.
设η为非零向量,A=,η为方程组AX=0的解,则a=_____________,方程组的通解为=_____________.
设某种商品每周的需求量X是服从区间[10,30]上均匀分布的随机变量,而经销商店进货数量为区间[10,30]中的某一整数,商店每销售一单位商品可获利500元;若供大于求则削价处理,每处理1单位商品亏损100元;若供不应求,则可从外部调剂供应,此时每1单位商
设随机变量X在1,2,3,4四个数字中等可能取值,随机变量Y在1~X中等可能地取一整数值.P{X=Y}.
求f(x,y,z)=2x+2y一z2+5在区域Ω:x2+y2+z2≤2上的最大值与最小值.
设数量场μ=xy2+z2-xyz,则rot(gradμ)=________.
随机试题
在国际政治领域以环境保护作为政治纲领和政治目标的政党称为()
Sturge-Weber综合征的面部蜘蛛痣主要累及
某男,19岁,高考前出现性情急躁易怒,胸胁胀满,口干而苦,头痛耳鸣,烧心吞酸,大便干结,舌质红,苔黄,脉弦数。治法应为()
根据《宪法》的规定,关于宪法文本的内容,下列哪一选项是正确的?(2013年试卷一第21题)
下列选项中,关于目前采用的绩效考评的指标和方法的表述正确的是()。
根据社会保险法律制度的规定,下列关于失业保险待遇的表述中,正确的是()。
建筑物及其附属设施的管理()。
我国下列玉雕中,总体风格以“南方之秀”为主,兼具“北方之雄”的是()。
在飘来飘去的朋友圈谣言面前,我们需要对传统的治理模式进行反思。一个更公开的、更亲民的政府,一个更克制的、更有限的市场,一个更平和的、更理想的社会,都是文明开放的舆论生态场不可或缺的。坦率而言,无论在哪一个方面,距离这个状态都还有很长的路要走,而在当下,也许
设向量组α1,α2,α3线性无关,向量β1能由α1,α2,α3线性表出,向量β。不能由α1,α2,α3线性表出,则必有[].
最新回复
(
0
)