首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2014年] 设函数f(x)具有二阶导数,g(x)=f(0)(1-x)+f(1)x,则在区间[0,1]上( ).
[2014年] 设函数f(x)具有二阶导数,g(x)=f(0)(1-x)+f(1)x,则在区间[0,1]上( ).
admin
2019-03-30
60
问题
[2014年] 设函数f(x)具有二阶导数,g(x)=f(0)(1-x)+f(1)x,则在区间[0,1]上( ).
选项
A、当f’(x)≥0时,f(x)≥g(x)
B、当f’(x)≥0时,f(x)≤g(x)
C、当f"(x)≥0时,f(x)≥g(x)
D、当f"(x)≥0时,f(x)≤g(x)
答案
D
解析
解一 令φ(x)=f(x)-g(x),则
φ(x)=f(x)-f(0)(1-x)-f(1)x,
且φ’(x)=f’(x)+f(0)-f(1),φ"(x)=f"(x).
当f"(0)≥0时,φ"(x)=f"(0)≥0,φ(x)为凹函数.
因φ(0)=φ(1)=0,由命题1.2.4.2(2)知,当x∈[0,1]时,φ(x)≤0,即f(x)≤g(x),仅(D)入选.
解二 由g(x)的表达式知,g(0)=f(0),g(1)=f(1),即f(x)与g(x)在区间[0,1]端点的函数值相等,又g(x)=f(0)+[f(1)-f(0)]x是一条直线,斜率k=f(1)-f(0).当f"(0)≥0时,f(x)在区间[0,1]上是凹的,而g(x)是连接f(x)两个端点的弦(见图1.2.4.2)故f(x)≤g(x).仅(D)入选.
转载请注明原文地址:https://kaotiyun.com/show/NiP4777K
0
考研数学三
相关试题推荐
证明4arctanx—x+=0恰有两个实根。
设A为二阶矩阵,α1,α2为线性无关的二维列向量,Aα1=0,Aα2=2α1+α2,则A的非零特征值为________。
(Ⅰ)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)一f(a)=f’(ξ)(b—a)。(Ⅱ)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且f’(x)=A,则f+’(0)
求函数f(x)=的所有间断点及其类型。
求下列极限:
设A是n阶矩阵,下列结论正确的是().
求极限.
(2004年)设A,B为两个随机事件,且P(A)=,P(B|A)=,P(A|B)=,令求:(Ⅰ)二维随机变量(X,Y)的概率分布;(Ⅱ)X与Y的相关系数ρXY;(Ⅲ)Z=X2+Y2的概率分布。
设y=y(x)在[0,+∞)内可导,且在x>0处的增量△y=y(x+△x)一y(x)满足△y(1+△y)=+α,其中当△x→0时α是△x的等价无穷小,又y(0)=2,求y(x).
随机试题
电动汽车爬坡车速试验规定将车辆加载到()状态。
______evidencethatlanguageacquiringabilitymustbestimulated.
张某于2000年1月1日以50万元购得一套住宅,购房款中60%来自银行提供的年利率为6%、期限为15年、按月等额偿还的个人住房抵押贷款。现张某拟于2005年1月1日将此套住宅连同与之相关的抵押债务转让给李某。根据李某的要求,银行为其重新安排了还款方案:贷款
质押可以是()。
在投资合同已约定有折算汇率的情况下,以人民币作为记账本位币的外商投资企业在收到外币资本投资时应采用的折算方法是( )。
恐怖症有以下哪些类型?()
志存高远、勤勤恳恳、兢兢业业、甘为人梯、乐于奉献,这体现了新时期教师职业道德规范内容中的()。
某兴趣小组测量一种易溶于水且形状不规则的固体颗粒物质的密度,测量的部分方法和结果如下图所示。该物质的密度是_______kg/m3。
由于内存大小有限,为使得一个或多个作业能在系统中运行,常需要外存来换取内存。其中以作业为单位对内外存进行交换的技术称为(44)技术,在作业内部对内外存进行交换的技术称为(45)技术。用外存换内存是以牺牲程序运行时间为代价的。为提高CPU有效利用率,避免内外
Itdoesn’tmatter______pailsofmilkyouspill.Justdon’tlosethecow.
最新回复
(
0
)