首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设y=f(x)是区间[0,1]上的任一非负连续函数。 试证存在x0∈(0,1),使得在区间[0,x0]上以f(x0)为高的矩形面积等于在区间[x0,1]上以y=f(x)为曲边的梯形面积;
设y=f(x)是区间[0,1]上的任一非负连续函数。 试证存在x0∈(0,1),使得在区间[0,x0]上以f(x0)为高的矩形面积等于在区间[x0,1]上以y=f(x)为曲边的梯形面积;
admin
2018-12-19
52
问题
设y=f(x)是区间[0,1]上的任一非负连续函数。
试证存在x
0
∈(0,1),使得在区间[0,x
0
]上以f(x
0
)为高的矩形面积等于在区间[x
0
,1]上以y=f(x)为曲边的梯形面积;
选项
答案
本题可转化为证明x
0
f(x
0
)=∫
x
0
1
。令φ(x)=一x∫
x
1
f(t)dt,则φ(x)在闭区间[0,1]上是连续的,在开区间(0,1)上是可导的,又因为φ(0)=φ(1)=0,根据罗尔定理可知,存在一点x
0
∈(0,1),使得φ’(x
0
)=0,即 φ’(x
0
)=x
0
f(x
0
)一∫
x
0
1
dt=0。 也就是 x
0
f(x
0
)=∫
x
0
1
f(x)dx。
解析
转载请注明原文地址:https://kaotiyun.com/show/Njj4777K
0
考研数学二
相关试题推荐
设f(x),g(x)在[0,1]上的导数连续,且f(0)=0,f’(x)≥0,g’(x)≥0.证明对任何a∈[0,1],有∫0ag(x)f’(x)dx+∫01f(x)g’(x)dx≥f(a)g(1).
设函数f(x)在x=a的某个邻域内连续,且f(a)为其极大值,则存在δ>0,当x∈(a一δ,a+δ)时,必有()
计算
设f(x)为[一a,a]上的连续偶函数,且f(x)>0,令F(x)=∫-aa|x-t|f(t)dt当F(x)的最小值为f(a)一a2一1时,求函数f(x).
(2000年)已知向量组具有相同的秩,且β3可由α1,α2,α3线性表示,求a、b的值.
(1996年)求微分方程y〞+y′=χ2的通解.
(1989年)微分方程y〞-y=eχ+1的一个特解应具有形式(式中a,b为常数)【】
设y=y(x)是一向上凸的连续曲线,其上任意一点(x,y)处的曲率为,又此曲线上的点(0,1)处的切线方程为y=x+1,求该曲线方程,并求函数y(x)的极值.
微分方程y"+y=x2+1+sinx的特解形式可设为()
[2004年]微分方程y"+y=x2+1+sinx的特解形式可设为().
随机试题
采用成本法核算长期股权投资的企业,股票持有期内被投资单位发放的现金股利,应于()确认投资收益。
社会学在中国的传播和发展过程中,恢复重建时期开始于【】
急腹症在未明确诊断时应对没有休克的病人()。
清偿能力评价指标包括()。
港航工程大体积混凝土构筑物不正确的防裂措施是()。
在资源管理器的文件夹窗口中,带“+”的文件夹图标表示该文件夹()。
Windows的文件组织结构是一种()。
下列货物或者服务,可以采用竞争性谈判方式采购的有()。
某民营企业长期从事房地产业务,但随着市场竞争日趋激烈,发展前景不容乐观,管理层打算逐步退出房地产行业,并对今后的长远发展进行战略性决策。然而公司内部意见不统一。一派认为现在公司每年建材采购方面的费用太大,应果断进入建材行业以控制成本;另一派认为建材市场竞争
Builtover50yearsbytwoprivatecompaniesandonecity-ownedcorporation,theNewYorksubwaysuffersfromcertainproblems(
最新回复
(
0
)