首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
以下4个命题 ①设f(x)是(一∞,+∞)上连续的奇函数,则∫一∞+∞f(x)dx必收敛,且∫一∞+∞f(x)dx=0; ②设f(x)在(一∞,+∞)上连续,且∫一RRf(x)dx存在,则∫一∞+∞f(x)dx必收敛,且∫一∞+∞f(x)dx=∫一RRf(
以下4个命题 ①设f(x)是(一∞,+∞)上连续的奇函数,则∫一∞+∞f(x)dx必收敛,且∫一∞+∞f(x)dx=0; ②设f(x)在(一∞,+∞)上连续,且∫一RRf(x)dx存在,则∫一∞+∞f(x)dx必收敛,且∫一∞+∞f(x)dx=∫一RRf(
admin
2016-06-25
76
问题
以下4个命题
①设f(x)是(一∞,+∞)上连续的奇函数,则∫
一∞
+∞
f(x)dx必收敛,且∫
一∞
+∞
f(x)dx=0;
②设f(x)在(一∞,+∞)上连续,且
∫
一R
R
f(x)dx存在,则∫
一∞
+∞
f(x)dx必收敛,且∫
一∞
+∞
f(x)dx=
∫
一R
R
f(x)dx;
③若∫
一∞
+∞
f(x)dx与∫
一∞
+∞
g(x)dx都发散,则∫
一∞
+∞
[f(x)+g(x)]dx未必发散;
④若∫
一∞
0
f(x)dx与∫
0
+∞
f(x)dx都发散,则∫
一∞
+∞
f(x)dx未必发散.
正确的个数的 ( )
选项
A、1个
B、2个
C、3个
D、4个
答案
A
解析
∫
一∞
+∞
f(x)dx收敛←→存在常数a,使∫
一∞
a
f(x)dx和∫
a
+∞
f(x)dx都收敛,此时
∫
一∞
+∞
f(x)dx=∫
一∞
a
f(x)dx+∫
a
+∞
f(x)dx.
设f(x)=x,则f(x)是(一∞,+∞)上连续的奇函数,且
∫
一R
R
f(x)dx=0.但是
∫
一∞
0
f(x)dx=∫
一∞
0
xdx=∞,∫
0
+∞
f(x)dx=∫
0
+∞
xdx=∞,
故∫
一∞
+∞
f(x)dx发散,这表明命题①,②,④都不是真命题.
设f(x)=x,g(x)=一x,由上面讨论可知∫
一∞
+∞
f(x)dx与∫
一∞
+∞
g(x)dx都发散,但∫
一∞
+∞
[f(x)+g(x)]dx收敛,这表明命题③是真命题.故应选(A).
转载请注明原文地址:https://kaotiyun.com/show/Y6t4777K
0
考研数学二
相关试题推荐
________.
设f(x)在[0,1]上二阶可导,且|f″(x)|≤|(x∈[0,1]),又f(0)=f(1),证明:|f′(x)|≤1/2(x∈[0,1]).
证明:
设f(x)在[0,1]上有定义,且exf(x)与e-f(x)在[0,1]上单调增加.证明:f(x)在[0,1]上连续.
设f(x)在[0,2]上连续,且f(0)=0,f(1)=1.证明:(1)存在c∈(0,1),使得f(c)=1-2c;(2)存在ξ∈[0,2],使得2f(0)+f(1)+3f(2)=6f(ξ).
若函数f(x)在(a,b)内具有二阶导数,且f(x1)=f(x2)=f(x3),其中a<x1<x2<x3<b,证明:在(x1,x3)内至少有一点ε,使得f’’(ε)=0.
设周期函数f(x)在(-∞,+∞)内可导,周期为4,又,则曲线y=f(x)在点(5,f(5))处的切线斜率为________.
确定常数a、b、c的值,使得.
设函数y=y(x)由方程2y3-2y2+2xy-x2=1所确定,试求y=y(x)的驻点,并判定它是否为极值点.
求微分方程(x2+2xy-y2)dx+(y2+2xy-x2)dy=0满足y|x=1=1的特解。
随机试题
适于销售计算机软件、电子报纸等信息产品的定价策略通常是()。
产生药物副作用的剂量是
下列除哪项外均是攻毒杀虫止痒药的使用注意
A、柴胡B、升麻C、葛根D、蔓荆子E、淡豆豉除发表透疹外,又能解毒的药是()
关于竣工验收的说法中,正确的是()。
日本CASBEE评价体系中最核心的基本评价工具包括()。
关于团体决策过程中经常使用的德尔菲技术的说法,正确的是()。
以下对颜元思想的评价,错误的一项是()
Thephrase"theworld"inthefirstlineofthepassagereferstoAccordingtothepassage,sea-watercanbeturnedintofresh
Theinterestthatcreativedramaticsgeneratesinstudiesisitsmostobviousadvantage.Thefactthatchildrendevelop【C1】_____
最新回复
(
0
)