首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设随机变量X服从正态分布N(μ1,σ12),随机变量Y服从正态分布N(μ2,σ22),且 P{|X-μ1|<1}>P{|Y-μ2|<1} 则必有
设随机变量X服从正态分布N(μ1,σ12),随机变量Y服从正态分布N(μ2,σ22),且 P{|X-μ1|<1}>P{|Y-μ2|<1} 则必有
admin
2019-03-11
64
问题
设随机变量X服从正态分布N(μ
1
,σ
1
2
),随机变量Y服从正态分布N(μ
2
,σ
2
2
),且
P{|X-μ
1
|<1}>P{|Y-μ
2
|<1}
则必有
选项
A、σ
1
<σ
2
.
B、σ
1
>σ
2
.
C、μ
1
<μ
2
.
D、μ
1
>μ
2
.
答案
A
解析
P{|X-μ
1
|<1}=
=2Ф(
)-1.
同理:P{|Y-μ
2
|<1}=2Ф(
)-1.
由已知得:
由分布函数的非降性得:
.
故σ
1
<σ
2
.
转载请注明原文地址:https://kaotiyun.com/show/NkP4777K
0
考研数学三
相关试题推荐
设Am×n,r(A)=m,Bm×(n-m),r(B)=n一m,且满足关系AB=O.证明:若η是齐次线性方程组AX=0的解,则必存在唯一的ξ,使得Bξ=η.
设函数f(x)具有连续的二阶导数,并满足方程f(x)=1一∫0x[f"(t)+4f(t)]dt,且f’(0)=0,求函数f(x)的表达式.
设α1,α2,…,αm均为n维实列向量,令矩阵证明:A为正定矩阵的充分必要条件是向量组α1,α2,…,αm线性无关.
设a0=1,a1=一2,a2=an(n≥2).证明:当|x|<1时,幂级数收敛,并求其和函数S(x).
某公共汽车站每隔10min有一辆汽车到达,一位乘客到达汽车站的时间是任意的,求他等候时间不超过3min的概率.
3阶矩阵已知r(AB)小于r(A)和r(B),求a,b和r(AB).
(Ⅰ)已知f(x)=,在(一∞,+∞)存在原函数,求常数A以及f(x)的原函数;(Ⅱ)设|y|<1,求F(y)=∫—11|x一y|exdx.
(Ⅰ)由曲线y=lnx与两直线y=e+1一x及y=0围成平面图形的面积S=________;(Ⅱ)由曲线y=2x一与直线y=a及y轴在第一象限所围平面图形的面积是仅由曲线y=2x一及直线y=a所围图形面积的,则a=________.
(Ⅰ)用等价、同阶、低阶、高阶回答:设f(x)在x0可微,f’(x0)≠0,则当△x→0时f(x)在x=x0处的微分与△x比较是()无穷小,△y=f(x0+△x)一f(x0)与△x比较是()无穷小,△y—df(x)与△x比较是()无
设f(x)在R上连续,且f(x)≠0,φ(x)在R上有定义,且有间断点,则下列陈述中正确的个数是()①φ[f(x)]必有间断点。②[φ(x)]2必有间断点。③f[φ(x)]没有间断点。
随机试题
乳头肌功能不全的描述,最常见的是
三仁汤所治痉病的病机为
冰冻解冻去甘油红细胞体外溶血试验血红蛋白增加率应
某海员长期食用罐头食品,近来出现牙龈出血、皮下出血。从营养学角度考虑缺乏哪种维生素的可能性大
水泥混凝土路面抗滑性能常用摩擦系数来表示。()
背景资料:某机电总承包公司通过投标承接,一栋超高层办公楼的机电安装工程。总承包公司中标后,业主向总承包公司提出超出招标文件中主要合同条款的附加条件,井以此作为签订合同的前提。附加条件包括①增加净化空调系统工程:②将原计划总工期20个目改为18个月。 总
《巴塞尔新资本协议》鼓励商业银行采取()计量信用风险。
Thetranslatormusthaveanexcellent,up-to-dateknowledgeofhis【C1】______languages,fullfacilityinthehandlingofhistarg
Itisoftensaidthatpolitenesscostsnothing.Infact,itseemsthatalittlemorecourtesycould【C1】______businesses£5bil
InordertohosttheOlympics,acitymustsubmitaproposaltotheIOC.Afterallproposalshavebeensubmitted,theIOCvotes.
最新回复
(
0
)