首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知3阶矩阵A满足|A-E|=|A-2E|=|A+E|=a,其中E为3阶单位矩阵。 (1)当a=0时,求行列式|A+3E|的值; (2)当a=2时,求行列式|A+3E|的值。
已知3阶矩阵A满足|A-E|=|A-2E|=|A+E|=a,其中E为3阶单位矩阵。 (1)当a=0时,求行列式|A+3E|的值; (2)当a=2时,求行列式|A+3E|的值。
admin
2021-04-16
75
问题
已知3阶矩阵A满足|A-E|=|A-2E|=|A+E|=a,其中E为3阶单位矩阵。
(1)当a=0时,求行列式|A+3E|的值;
(2)当a=2时,求行列式|A+3E|的值。
选项
答案
(1)当a=0时,易知A有3个互异的特征值1,2,-1,所以存在可逆矩阵P使P
-1
AP=[*], 从而有P
-1
(A+3E)P=P
-1
AP+3E=[*], 表明A+3E的特征值为4,5,2,因此|A+3E|=4×5×2=40。 (2)当a=2时,设f(λ)=|λE-A|是A的特征多项式,g(λ)=f(λ)+2,则 g(1)=f(1)+2=|E-A|+2=0,g(2)=f(2)+2=|2E-A|+2=0,g(-1)=f(-1)+2=|-E-A|+2=0,所以g(λ)=(λ-1)(λ-2)(λ+1)=λ
3
-2λ
2
-λ+2,由此得 f(λ)=g(λ)-2=λ(λ
2
-2λ-1),令f(λ)=0,解得A的特征值为0,1+[*],1-[*],所以A+3E的特征值为3,4+[*],4-[*],故|A+3E|=3(4+[*])(4-[*])=42。
解析
转载请注明原文地址:https://kaotiyun.com/show/Npx4777K
0
考研数学三
相关试题推荐
A、 B、 C、 D、 B
若g(x)=,又f(x)在x=0处可导,则d/dx{f[g(x)]}|x=0=_________.
[*]
A、 B、 C、 D、 C
设f(x)在[0,2]上连续,在(0,2)内二阶可导,且=0,又f(2)=2f(x)dx,证明:存在ξ∈(0,2),使得f’(ξ)+f"(ξ)=0。
已知四阶方阵A=(α1,α2,α3,α4),α1,α2,α3,α4均为四维列向量,其中α1,α2线性无关,若α1+2α2一α3=β,α1+α2+α3+α4=β,2α1+3α2+α3+2α4=β,k1,k2为任意常数,那么Ax=β的通解为()
某五元齐次线性方程组的系数矩阵经初等变换化为则自由变量可取为①x4,x5;②x3,x5;③x1,x5;④x2,x3。那么正确的共有()
在函数中当x→0时极限f(x)不存在的是
设当x→x0时,α(x),β(x)(β(x)≠0)都是无穷小,则当x→x0时,下列表达式中不一定为无穷小的是()
已知向量组(Ⅰ):α1,α2,α3;(Ⅱ)α1,α2,α3,α4;(Ⅲ):α1,α2,α3,α5.如果各向量组的秩分别为R(Ⅰ)=R(Ⅱ)=3,R(Ⅲ)=4.证明:向量组(Ⅳ):α1,α2,α3,α5一α4的秩为4.
随机试题
设函数f(x)在[0,1]上连续且f(x)>0,证明在(0,1)存在唯一实根.
质量管理的职能是通过建立、实施、保持和持续改进( )来实现。
施工图预算审查的主要内容包括( )。
下列关于系统软件的四条叙述中,错误的描述是()。
不得购买储蓄国债的机构投资者有( )。
基于效用原理的房地产定价方法是()。
社区工作者要从各个方面来实践专业价值观,其中()是指社会工作者应当尊重服务对象的个体差异,不应当使用一般或统一的服务方法回应他们的独特需求,要充分考虑服务对象的价值差异。
你认为高学历的人是人才,还是拥有一技之长的人是人才?
下列关于维生素的说法中正确的是:
Thereseemsnevertohavebeenacivilizationwithouttoys,butwhenandhowtheydevelopedisunknown.Theyprobablycameabout
最新回复
(
0
)