首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设三元非齐次线性方程组的系数矩阵的秩为1,且α1,α2,α3是它的三个解向量.若α1+α2=[1,2,一4]T, α2+α3=[0,一2,2]T, α3+α1=[1,0,一1]T,则该非齐次线性方程组的通解为___________.
设三元非齐次线性方程组的系数矩阵的秩为1,且α1,α2,α3是它的三个解向量.若α1+α2=[1,2,一4]T, α2+α3=[0,一2,2]T, α3+α1=[1,0,一1]T,则该非齐次线性方程组的通解为___________.
admin
2019-08-09
20
问题
设三元非齐次线性方程组的系数矩阵的秩为1,且α
1
,α
2
,α
3
是它的三个解向量.若α
1
+α
2
=[1,2,一4]
T
, α
2
+α
3
=[0,一2,2]
T
, α
3
+α
1
=[1,0,一1]
T
,则该非齐次线性方程组的通解为___________.
选项
答案
c
1
[1,4,一6]
T
+c
2
[一1,2,3]
T
+[1,0,一2]
T
解析
设AX=b为三元非齐次线性方程组.由题设n=3,r(A)=1,因而Ax=0的一个基础解系含n一r(A)=3—1=2个解向量.
因 α
1
+α
2
一(α
2
+α
3
)=[1,4,一6]
T
=α
1
一α
3
,
α
2
+α
3
一(α
3
+α
1
)=[一1,一2,3]
T
=α
2
一α
1
,
而α
1
一α
3
,α
2
一α
1
均为Ax=0的解向量,且不成比例,故线性无关,可视为AX=0的一个基础解系.又因
(α
1
+α
2
)+(α
2
+α
3
)+(α
3
+α
1
)=2(α
1
+α
2
+α
3
)=[2,0,一3]
T
,
即 α
1
+α
2
+α
3
=[1,0,一3/2]
T
, ①
又 α
1
+α
2
+α
2
+α
3
=[1,0,一2]
T
, ②
由式②一式①得到α
2
=[0,0,1/2]
T
,此为AX=b的特解,从而所求通解为
c
1
(α
1
一α
3
)+c
2
(α
2
一α
1
)+α
2
=c
1
[1,4,一6]
T
+c
2
[一1,2,3]
T
+[1,0,一2]
T
.
转载请注明原文地址:https://kaotiyun.com/show/O0c4777K
0
考研数学一
相关试题推荐
n元非齐次线性方程组AX=β如果有解,则解集合的秩为=n-r(A)+1.
设η1,η2,η3为3个n维向量,已知n元齐次方程组AX=0的每个解都可以用η1,η2,η3线性表示,并且r(A)=n-3,证明η1,η2,η3为AX=0的一个基础解系.
已知线性方程组有解(1,-1,1,-1)T.(1)用导出组的基础解系表示通解;(2)写出χ2=χ3的全部解.
设A=,β=①计算行列式|A|.②实数a为什么值时方程组AX=β有无穷多解?在此时求通解.
求极限
计算对数曲线y=lnx上相应于的一段弧的弧长。
求曲线r=3cosθ,r=1+cosθ所围成的图形含于曲线r=3cosθ内部的公共部分的面积。
求其中Ω:x2+y2+z2≤R2(R>0)。
设随机变量X与Y相互独立,下表列出了二维随机变量(X,Y)联合分布率及关于X和关于Y的边缘分布率中的部分数值,试将其余数值填入表中的空白处。
设[x]表示x的最大整数部分,则______.
随机试题
有关M4a的骨髓象,下列描述正确的是
正常人尿液中可出现的白细胞主要是
A、乳糜微粒B、极低密度脂蛋白C、低密度脂蛋白D、中间密度脂蛋白E、高密度脂蛋白有助于防止动脉粥样硬化的脂蛋白
下列方程中代表锥面的是:
城市景观环境是()。
背景资料:某城市桥梁工程,采用钻孔灌注桩基础,承台最大尺寸为:长8m,宽6m,高3m,梁体为现浇预应力钢筋混凝土箱梁。跨越既有道路部分,梁跨度30m,支架高20m。 桩身混凝土浇注前,项目技术负责人到场就施工方法对作业人员进行了口头交底,随后立即进行
按计入指数的项目多少不同,指数可分为()。
教师要具有符合时代特征的学生观。这就要求教师正确理解学生全面发展与个性发展的关系,全体发展与个体发展的关系以及()。
若用户在Winmail邮件服务器注册的邮箱是user@mail.xyz.com,则下列描述中错误的是()。
A、Stopbeingangryandforgive.B、Learntobesuccessful.C、Youchoosetobehappy.D、Makeyourmemorybetter.C短文最后提到,Matthews的
最新回复
(
0
)