首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设三元非齐次线性方程组的系数矩阵的秩为1,且α1,α2,α3是它的三个解向量.若α1+α2=[1,2,一4]T, α2+α3=[0,一2,2]T, α3+α1=[1,0,一1]T,则该非齐次线性方程组的通解为___________.
设三元非齐次线性方程组的系数矩阵的秩为1,且α1,α2,α3是它的三个解向量.若α1+α2=[1,2,一4]T, α2+α3=[0,一2,2]T, α3+α1=[1,0,一1]T,则该非齐次线性方程组的通解为___________.
admin
2019-08-09
35
问题
设三元非齐次线性方程组的系数矩阵的秩为1,且α
1
,α
2
,α
3
是它的三个解向量.若α
1
+α
2
=[1,2,一4]
T
, α
2
+α
3
=[0,一2,2]
T
, α
3
+α
1
=[1,0,一1]
T
,则该非齐次线性方程组的通解为___________.
选项
答案
c
1
[1,4,一6]
T
+c
2
[一1,2,3]
T
+[1,0,一2]
T
解析
设AX=b为三元非齐次线性方程组.由题设n=3,r(A)=1,因而Ax=0的一个基础解系含n一r(A)=3—1=2个解向量.
因 α
1
+α
2
一(α
2
+α
3
)=[1,4,一6]
T
=α
1
一α
3
,
α
2
+α
3
一(α
3
+α
1
)=[一1,一2,3]
T
=α
2
一α
1
,
而α
1
一α
3
,α
2
一α
1
均为Ax=0的解向量,且不成比例,故线性无关,可视为AX=0的一个基础解系.又因
(α
1
+α
2
)+(α
2
+α
3
)+(α
3
+α
1
)=2(α
1
+α
2
+α
3
)=[2,0,一3]
T
,
即 α
1
+α
2
+α
3
=[1,0,一3/2]
T
, ①
又 α
1
+α
2
+α
2
+α
3
=[1,0,一2]
T
, ②
由式②一式①得到α
2
=[0,0,1/2]
T
,此为AX=b的特解,从而所求通解为
c
1
(α
1
一α
3
)+c
2
(α
2
一α
1
)+α
2
=c
1
[1,4,一6]
T
+c
2
[一1,2,3]
T
+[1,0,一2]
T
.
转载请注明原文地址:https://kaotiyun.com/show/O0c4777K
0
考研数学一
相关试题推荐
在时刻t=0时开始计时,设事件A1,A2分别在时刻X,Y发生,且X与Y是相互独立的随机变量,其概率密度分别为求A1先于A2发生的概率.
设随机变量Yi(i=1.2.3)相互独立.并且都服从参数为p的0-1分布.令求随机变量(X1,X2)的联合概率分布.
设齐次方程组(Ⅰ)有一个基础解系β1=(b11,b12,…,b1×2n)T,β=(b21,b22,…,b2×2n)T,…,βn=(bn1,bn2,…,bn×2n)T.证明A的行向量组是齐次方程组(Ⅱ)的通解.
已知两个线性方程组同解,求m,n,t.
设线性方程组为(1)讨论a1,a2,a3,a4取值对解的情况的影响.(2)设a1=a3,a2=a4=-k(k≠0),并且(-1,1,1)T和(1,1,-1)T都是解,求此方程组的通解.
,已知线性方程组AX=β存在两个不同的解.①求λ,a.②求AX=β的通解.
假设某种型号的螺丝钉的重量是随机变量,期望值为50克,标准差为5克.求:(Ⅰ)100个螺丝钉一袋的重量超过5.1千克的概率;(Ⅱ)每箱螺丝钉装有500袋,500袋中最多有4%的重量超过5.1千克的概率.
设曲线y=ax2(x≥0,常数a>0)与曲线y=1-x2交于点A,过坐标原点O和点A的直线与曲线y=ax2围成一平面图形D。求a的值,使V(a)为最大。
设y=y(x)是二阶线性常系数非齐次微分方程y"+Py’+Qy=3e2x满足初始条件y(0)=y’(0)=0的特解,则极限
随机试题
NO是一种红棕色、有特殊臭味的气体。()
我国古典美学中谈到的“状难写之景如在目前,含不尽之意见于言外”揭示了审美对象的哪个特点【】
按工作原理分类的泵有()。
根据《合同法》规定,当事人在合同中约定的违约金过分高于因违约行为造成的损失的,违约方()。
资料1资料2资料3请根据以上资料,选择以下栏目的正确选项:“运输工具名称”栏:()。
CallerID
在美国国防部的可信任计算机标准评估准则中,安全等级最低的是()。
【B1】【B2】
A、Tobeakeenphotographeristoocostly.B、Shehastodevelop10rollsoffilms.C、Allherfilmswerevanished.D、Afterthetr
WritingPublicSpeeches1.SpeechesthatinformInformativespeeches:toshow,【T1】andinform【T1】______Possiblemethodsoforgan
最新回复
(
0
)