首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设随机变量Yi(i=1.2.3)相互独立.并且都服从参数为p的0-1分布.令 求随机变量(X1,X2)的联合概率分布.
设随机变量Yi(i=1.2.3)相互独立.并且都服从参数为p的0-1分布.令 求随机变量(X1,X2)的联合概率分布.
admin
2018-11-23
55
问题
设随机变量Y
i
(i=1.2.3)相互独立.并且都服从参数为p的0-1分布.令
求随机变量(X
1
,X
2
)的联合概率分布.
选项
答案
易见随机变量(X
1
,X
2
)是离散型的,它的全部可能取值为(0,0),(0,1),(1,0),(1,1).现在要计算出取各相应值的概率.注意到事件Y
1
,Y
2
,Y
3
相互独立且服从同参数p的0-1分布,因此它们的和Y
1
+Y
2
+Y
3
[*]Y服从二项分布B(3,p).于是 P{X
1
=0,X
2
=0}=P{Y
1
+Y
2
+Y
3
≠1,Y
1
+Y
2
+Y
3
≠2} =P{Y=0}+P{Y=3}=q
3
+p
3
, (q[*]1-p) P{X
1
=0,X
2
=1}=P{Y
1
+Y
2
+Y
3
≠1,Y
1
+Y
2
+Y
3
=2} =P{Y=2}=3p
2
q, P{X
1
=1,X
2
=0}=P{Y
1
+Y
2
+Y
3
=1,Y
1
+Y
2
+Y
3
≠2}=P{Y=1}=3pq
2
, P{X
1
=1,X
2
=1}=P{Y
1
+Y
2
+Y
3
=1,Y
1
+Y
2
+Y
3
=2}=P{[*]}=0. 由上计算可知(X
1
,X
2
)的联合概率分布为 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/inM4777K
0
考研数学一
相关试题推荐
设随机变量X与Y相互独立,都服从均匀分布U(0,1).求Z=|X—Y|的概率密度及
某流水生产线上每个产品不合格的概率为p(0<p<1),各产品合格与否相互独立,当出现一个不合格产品时即停机检修,设开机后第一次停机时已生产了的产品个数为X,求E(X)和D(X)。
设f(x)在闭区间[-1,1]上具有三阶连续导数,且f(-1)=0,f(1)=1,f’(0)=0.证明:在[-1,1]内存在ξ,使得f’’(ξ)=3.
假设一设备开机后无故障工作的时间服从指数分布,平均无故障工作的时间(EX)为5h,设备定时开机,出现故障时自动关机,而在无故障的情况下工作2h便关机,试求该设备每次开机无故障工作的时间Y的分布函数F(y).
(Ⅰ)设随机变量x服从参数为λ的指数分布,证明:对任意非负实数s及t,有P{x≥s+t|X≥s}=P{x≥t}。(Ⅱ)设电视机的使用年数X服从参数为0.1的指数分布,某人买了一台旧电视机,求还能使用5年以上的概率。
设随机变量X的概率密度为,-∞<x<+∞,求:(1)常数C;(2)X的分布函数F(x)和P{0≤X≤1};(3)Y=e-|X|的概率密度fY(y).
设离散型随机变量X的概率函数为P{x=i}=pi+1,i=0,1,则p=________.
若在区间(0,1)上随机地取两个数u,ν,则关于x的一元二次方程x2一2νx+u=0有实根的概率为________.
微分方程xy’+2y=sinx满足条件y(π)=的通解为________。
设随机变量X服从正态分布N(μ,σ2),已知P{X≤2}=0.062,P{X≥9}=0.025,则概率P{|X|≤4}=_______。(Ф(1.54)=0.938,Ф(1.96)=0.975)
随机试题
社会角色
请描述各种不同的绩效评估方法。
A、Shelostherowncoat.B、Shewantstokeephersonwarm.C、Itisverycoldatthetopofthemountain.D、Shelikesthecoatfo
五行中“木”的特性是
主治寒饮伏肺的药是()。
GPS测量按其精度分为()级。
【背景资料】某工程项目,业主通过招标方式确定了承包商,双方采用工程量清单计价方式签订了施工合同。该工程共有10个分项工程,工期150天,施工期为3月3日至7月30日。合同规定,工期没提前1天,承包商可获得提前工期奖1.2万元;工期每托后1天,承包
对任意θ∈(0,),有().
经济建设、改革开放、四项基本原则的相互关系是()。
无符号二进制整数10llOlO转换成十进制数是
最新回复
(
0
)