求二元函数z=f(x,y)=x2y(4一x—y)在由直线x+y=6,x轴和y轴所围成的闭区域D上的最大值与最小值.

admin2019-08-11  35

问题 求二元函数z=f(x,y)=x2y(4一x—y)在由直线x+y=6,x轴和y轴所围成的闭区域D上的最大值与最小值.

选项

答案先求区域内的极值,再求边界上的极值,通过比较即得闭区域上的最值. 解 由方程组 [*] 得x=0(0≤y≤6)及点(4,0),(2,1). 点(4,0)及线段x=0在D的边界上,且f(2,1)=4. 在边界x+y=6上,y=6一x,代入f(x,y)中,得 z=2x2一12x2 (0≤x≤6). 由z′=6x2一24x=0得x=0,x=4. 当x=0时,y=6,f(0,6)=0. 当x=4时,y=2,f(4,2)=一64. 经比较,最大值为f(2,1)=4,最小值为f(4,2)=一64. 注意 求连续函数z=f(x,y)在有界闭区域D上最值的步骤如下: (1)求D内的驻点(即方程组f′x=0,f′y=0的解)及不可导点(即f′x与f′y不存在的点); (2)将D的边界线方程代入z=f(x,y)中将其化为一元函数,求出其极值可疑点(即z′=0的根及使z′不存在的点); (3)求出上述所有点处对应的函数值,比较其大小,可得f(x,y)在D上的最大值与最小值.

解析
转载请注明原文地址:https://kaotiyun.com/show/OAN4777K
0

最新回复(0)