首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设矩阵A是秩为2的4阶矩阵,又α1,α2,α3是线性方程组Ax=b的解,且α1+α2一α3=(2,0,一5,4)T,α2+2α3=(3,12,3,3)T,α3—2α1=(2,4,1,一2)T,则方程组Ax=b的通锵x=
设矩阵A是秩为2的4阶矩阵,又α1,α2,α3是线性方程组Ax=b的解,且α1+α2一α3=(2,0,一5,4)T,α2+2α3=(3,12,3,3)T,α3—2α1=(2,4,1,一2)T,则方程组Ax=b的通锵x=
admin
2014-06-15
85
问题
设矩阵A是秩为2的4阶矩阵,又α
1
,α
2
,α
3
是线性方程组Ax=b的解,且α
1
+α
2
一α
3
=(2,0,一5,4)
T
,α
2
+2α
3
=(3,12,3,3)
T
,α
3
—2α
1
=(2,4,1,一2)
T
,则方程组Ax=b的通锵x=
选项
A、
B、
C、
D、
答案
A
解析
由于n一r(A)=4—2=2,故方程组Ax=b的通:解形式应为α+k
1
η
1
+k
2
η
2
.这样可排除C,D.因为A
(α
2
+2α
3
)=b,A(α
3
—2α
1
)=一b,所以A中(1,4,1,1)
T
和B中(一2,一4,一1,2)都是方程组Ax=b的解.(A)和(B)中均有(2,2,一2,1)
T
,因此它必是Ax=0的解.只要检验(1,一4,一6,3)
T
和(1,8,2,5)
T
哪一个是Ax=0的解就可以了.由于3(α
1
+α
2
一α
3
)一(α
2
+2α
3
)=3(α
1
一α
3
)+2(α
2
一α
3
)是Ax=0的解,所以(3,一12,一18,9)
T
是Ax=0的解.那么(1,一4,一6,3)
T
是Ax=0的解.故应选A.
转载请注明原文地址:https://kaotiyun.com/show/OJ34777K
0
考研数学二
相关试题推荐
设A为三阶矩阵,其特征值为λ1=λ2=-1,λ3=2,对应的线性无关的特征向量为α1,α2,α3,又P=(α1+α3,α2-α3,α3),则P-1AP=()。
下列命题正确的是()。
设D是由曲线与直线y=x围成,则=________。
已知E(X)=1,E(X2)=3,用切比雪夫不等式估计P{-1<X<4}≥a,则a的最大值为()。
设f(x,y)满足f(x,1)=0,f’y(x,0)=sinx,f"yy(x,y)=2x,则f(x,y)=________。
设有一个边长为a的质地均匀的正立方体Γ沉入一个体积很大的水池,假设水池的水深为a,并且立方体Γ的上表面恰好与水面重合,又设水的密度为ρ,立方体Γ的密度为kp,其中k>1为常数,重力加速度为g.试利用定积分方法计算将立方体Γ提升出水面需要做的功.
已知y=f(ex+y)确定隐函数y=y(x),其中f二阶可导且其一阶导数f′≠1,求
设3阶实对称矩阵A的各行元素之和均为3,向量α1=(-1,2,-1)T,α2=(0,-1,1)T,是线性方程组Ax=0的两个解,(1)求A的特征值与特征向量;(2)已知正交变换x=Qy,把二次型f=xTAx化为标准形,求矩阵Q和A。
在区间[0,1]上函数f(x)=nx(1-x)n(n为正整数)的最大值记为M(n),则M(n)=________.
设A为n阶非零矩阵,且存在自然数k,使得Ak=O.证明:A不可以对角化.
随机试题
直肠的齿状线
下列不属于实证表现的是
对于短暂性脑缺血发作不正确的是
H.S编码制度将所有国际贸易商品分为( )类。
在金融产品的偏好上,中小企业主的特征不同,产品选择也不同。一般而言,企业主导型更倚重金融产品的定制和丰富性:从投资咨询的偏好来说业余投资爱好者对于投资咨询有更高的要求。()
档案利用工作是档案工作的()
下列对于我国古代史实的描述,正确的一项是()。
幼儿记忆发展的显著特征是
求极限
arrivepastfinishedhurrymusthardworryalreadyWhysuchTheytried______tosucceed.
最新回复
(
0
)