首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,1]连续,在(0,1)内f(x)>0且xf’(x)=f(x)+ax2,又由曲线y=f(x)与直线x=1,y=0围成平面图形的面积为2,求函数y=f(x),问a为何值,此图形绕x轴旋转而成的旋转体体积最小?
设f(x)在[0,1]连续,在(0,1)内f(x)>0且xf’(x)=f(x)+ax2,又由曲线y=f(x)与直线x=1,y=0围成平面图形的面积为2,求函数y=f(x),问a为何值,此图形绕x轴旋转而成的旋转体体积最小?
admin
2018-11-11
74
问题
设f(x)在[0,1]连续,在(0,1)内f(x)>0且xf’(x)=f(x)+
ax
2
,又由曲线y=f(x)与直线x=1,y=0围成平面图形的面积为2,求函数y=f(x),问a为何值,此图形绕x轴旋转而成的旋转体体积最小?
选项
答案
(Ⅰ)首先由xf’(x)=f(x)+[*]ax
2
,f(x)>0(x∈(0,1))求出f(x).这是求解一阶线性方程f’(x)-[*].两边乘积分因子μ=[*](取其中一个),得[*],其中C为任意常数使得f(x)>0(x∈(0,1)). (Ⅱ)确定C与a的关系使得由y=f(x)与x=1,y=0围成平面图形的面积为2. 由已知条件得2=[*],则C=4-a.因此,f(x)=[*]ax
2
+(4-a)x,其中a为任意常数使得f(x)>0(x∈(0,1)). [*]a,有f(0)=0, f(1)=[*].又f’(x)=3ax+4-a,由此易知-8≤a≤4时f(x)>0(x∈(0,1)). (Ⅲ)求旋转体的体积. [*] (Ⅳ)求V(a)的最小值点,由于 [*] 则当a=-5时f(x)>0(x∈(0,1)),旋转体体积取最小值.
解析
转载请注明原文地址:https://kaotiyun.com/show/ORj4777K
0
考研数学二
相关试题推荐
已知随机变量X的概率密度为fX(x)=e-|x|,一∞<x<+∞,又设求(1)求x的分布函数;(2)求y的概率分布和分布函数;(3)计算p{Y>}。
设4维向量空间V的两个基分别为(I)α1,α2,α3,α4;(Ⅱ)β1=α1+α2+α3,β2=α2+α3,β3=α3+α4,β4=α4,求由基(Ⅱ)到基(I)的过渡矩阵;
求一组向量α1,α2,使之与α3=(1,1,1)T成为R3的正交基;并把α1,α2,α3化成R3的一个标准正交基.
设可微函数f(x)满足方程求f(x)的表达式.
已知A是3阶实对称矩阵,满足A4+2A3+A2+2A=O,且秩r(A)=2,求矩阵A的全部特征值,并求秩r(A+E).
设矩阵,矩阵B满足ABA*=2BA*+E,其中A*为A的伴随矩阵,E是单位矩阵,则|B|=_________.
设函数y(x)具有二阶导数,且曲线l:y=y(x)与直线y=x相切于原点,记α为曲线l在点(x,y)处切线的倾角,若,求y(x)的表达式.
设f(x),g(x)在[0,1]上的导数连续,且f(0)=0,f’(x)≥0,g’(x)≥0.证明对任何a∈[0,1],有∫0ag(x)f’(x)dx+∫01f(x)g’(x)dx≥f(a)g(1).
设二次型f(x1,x2,x3)=XTAX经过正交变换化为标准形f=2y12-y22-y32,又A*α=α,其中α=(1,1,-1)T.(Ⅰ)求矩阵A;(Ⅱ)求正交矩阵Q,使得经过正交变换X=QY,二次型f(x1,x2,x3)=XTAX化为标准形.
(1998年)利用代换y=将方程y〞cosχ-2y′sinχ+3ycosχ=eχ化简,并求出原方程的通解.
随机试题
SpeakerA:Excuseme,canyoutellmethewaytotherailwaystation?SpeakerB:______
Iwasinvitedtopresentalecturetoaclassofgraduatenurseswhowerestudyingthe"PsychosocialAspectsofAging."Istar
2007年1月,甲股份有限公司(章程规定董事会设董事13名)增发股票结束,公司持股情况发生巨大变化,原13名董事中,5名董事宣布退出董事会。下列表述不正确的是()。
企业集团中构成重大影响的情况包括()
下列各项中,属于所有者权益的有()。
社会主义核心价值观包括三个层面的内容。下列属于个人层面的价值目标是()。
北京市的交通拥堵,实际上是公共资源的高度聚集和城市功能区分布的严重失衡。“摊大饼式”的城市化发展路径令城市越来越大,而卫星城就业、医疗、教育等配套设施发展迟缓,以致市民工作与生活的半径越来越大。要改变这样的局面,需要城市管理者科学规划,对公共资源进行均衡分
理想对于()相当于()对于行动。
In1981KenjiUrada,a37-year-oldJapanesefactoryworker,climbedoverasafetyfenceataKawasakiplanttocarryoutsomema
Mostpeopledon’twakeupinthemorning,combtheirhair,andwalkoutthefrontdoorandontotheworldstage.ButBritain’sP
最新回复
(
0
)