首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,1]连续,在(0,1)内f(x)>0且xf’(x)=f(x)+ax2,又由曲线y=f(x)与直线x=1,y=0围成平面图形的面积为2,求函数y=f(x),问a为何值,此图形绕x轴旋转而成的旋转体体积最小?
设f(x)在[0,1]连续,在(0,1)内f(x)>0且xf’(x)=f(x)+ax2,又由曲线y=f(x)与直线x=1,y=0围成平面图形的面积为2,求函数y=f(x),问a为何值,此图形绕x轴旋转而成的旋转体体积最小?
admin
2018-11-11
61
问题
设f(x)在[0,1]连续,在(0,1)内f(x)>0且xf’(x)=f(x)+
ax
2
,又由曲线y=f(x)与直线x=1,y=0围成平面图形的面积为2,求函数y=f(x),问a为何值,此图形绕x轴旋转而成的旋转体体积最小?
选项
答案
(Ⅰ)首先由xf’(x)=f(x)+[*]ax
2
,f(x)>0(x∈(0,1))求出f(x).这是求解一阶线性方程f’(x)-[*].两边乘积分因子μ=[*](取其中一个),得[*],其中C为任意常数使得f(x)>0(x∈(0,1)). (Ⅱ)确定C与a的关系使得由y=f(x)与x=1,y=0围成平面图形的面积为2. 由已知条件得2=[*],则C=4-a.因此,f(x)=[*]ax
2
+(4-a)x,其中a为任意常数使得f(x)>0(x∈(0,1)). [*]a,有f(0)=0, f(1)=[*].又f’(x)=3ax+4-a,由此易知-8≤a≤4时f(x)>0(x∈(0,1)). (Ⅲ)求旋转体的体积. [*] (Ⅳ)求V(a)的最小值点,由于 [*] 则当a=-5时f(x)>0(x∈(0,1)),旋转体体积取最小值.
解析
转载请注明原文地址:https://kaotiyun.com/show/ORj4777K
0
考研数学二
相关试题推荐
下列命题中正确的是()
设A,B是n阶矩阵,A有特征值λ=1,2,…,n.证明:对一般的n阶矩阵A,B,是否必有AB~BA?
设当实数a为何值时,方程组Ax=β有无穷多解,并求其通解.
设方程组(1)与方程(2)x1+2x2+x3=a—1有公共解,求a的值及所有公共解.
设A,B为同阶方阵,举一个二阶方阵的例子说明(1)的逆命题不成立;
极限____________.
求极限.
设u=f(x,y,z),φ(x2,ey,z)=0,y=sinx,其中f,φ都具有一阶连续偏导数,且
(2003年)设an=,则极限nan等于【】
随机试题
阅读下文,回答问题。温暖的村庄安庆村庄真是一个固执的地方
()对于《史记》相当于刻舟求剑对于()。
甲企业、乙企业和朱某作为发起人募集设立了丙股份有限公司,丙公司共有200万股股份,甲企业持有丙公司40万股股份.乙企业持有丙公司20万股股份,朱某持有丙公司10万股股份,其余股份以无记名股票的形式发放募集。丙公司章程中规定实行累积投票制。丙公司为奖励公司杰
一般识别声音所需要的最短持续时间为()ms。
平等的市场主体应该享有平等地接近和享用经济要素的权利,()是保证农民平等地享用经济资源,是统筹城乡经济社会发展的关键。
用不超过150字的篇幅,概括出上述资料的主要内容。用不超过350字的篇幅,针对资料所反映的问题,提出解决方案或应对措施,该方案或措施要有可行性。
设不定积分的结果中不含对数函数,求常数α,β,γ,δ应满足的充要条件,并计算此不定积分.
一台交换机具有48个10/100Mbit/s端口和2个1000Mbit/s端口,如果所有端口都工作在全双工状态,那么交换机总带宽应为()。
Marywasgoingtoaweddingsoshebrushed______well.
Humanbehaviorismostlyaproductoflearning,whereasthebehaviorofananimaldependsmainlyon________.
最新回复
(
0
)