首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,1]连续,在(0,1)内f(x)>0且xf’(x)=f(x)+ax2,又由曲线y=f(x)与直线x=1,y=0围成平面图形的面积为2,求函数y=f(x),问a为何值,此图形绕x轴旋转而成的旋转体体积最小?
设f(x)在[0,1]连续,在(0,1)内f(x)>0且xf’(x)=f(x)+ax2,又由曲线y=f(x)与直线x=1,y=0围成平面图形的面积为2,求函数y=f(x),问a为何值,此图形绕x轴旋转而成的旋转体体积最小?
admin
2018-11-11
41
问题
设f(x)在[0,1]连续,在(0,1)内f(x)>0且xf’(x)=f(x)+
ax
2
,又由曲线y=f(x)与直线x=1,y=0围成平面图形的面积为2,求函数y=f(x),问a为何值,此图形绕x轴旋转而成的旋转体体积最小?
选项
答案
(Ⅰ)首先由xf’(x)=f(x)+[*]ax
2
,f(x)>0(x∈(0,1))求出f(x).这是求解一阶线性方程f’(x)-[*].两边乘积分因子μ=[*](取其中一个),得[*],其中C为任意常数使得f(x)>0(x∈(0,1)). (Ⅱ)确定C与a的关系使得由y=f(x)与x=1,y=0围成平面图形的面积为2. 由已知条件得2=[*],则C=4-a.因此,f(x)=[*]ax
2
+(4-a)x,其中a为任意常数使得f(x)>0(x∈(0,1)). [*]a,有f(0)=0, f(1)=[*].又f’(x)=3ax+4-a,由此易知-8≤a≤4时f(x)>0(x∈(0,1)). (Ⅲ)求旋转体的体积. [*] (Ⅳ)求V(a)的最小值点,由于 [*] 则当a=-5时f(x)>0(x∈(0,1)),旋转体体积取最小值.
解析
转载请注明原文地址:https://kaotiyun.com/show/ORj4777K
0
考研数学二
相关试题推荐
设函数f(x)=如果f"(0)存在,求常数a,b.
设函数f(x)连续,且满足f(x)=ex+∫0xtf(t)dt一x∫0xf(t)dt,求f(x)的表达式·
设已知线性方程组Ax=b,存在两个不同的解.求λ,a;
设求满足Aξ2=ξ1,A2ξ=ξ1的所有向量ξ2,ξ3;
设矩阵的特征值有一个二重根,求a的值,并讨论矩阵A是否可相似对角化.
设线性非齐次方程组Ax=(α1,α2,α3,α4)x=α5有通解k(一1,2,0,3)T+(2,一3,1,5)T.求方程组(α2,α3,α4)x=α5的通解;
设z=f(xy,yg(x)),其中函数f具有二阶连续偏导数,函数g(x)可导,且在z=1处取得极值
(2003年)设函数f(χ)在闭区间[a,b]上连续,在开区间(a,b)内可导,且f′(χ)>0.若极限存在.证明:(1)在(a,b)内f(χ)>0;(2)在(a,b)内存在点ξ,使(3)在(a,b)内存在与(2)中ξ相异的点
(1997年)λ取何值时,方程组无解,有唯一解或有无穷多解?并在有无穷多解时写出方程组的通解.
随机试题
求极限
水流在直径为d的圆管中满流流动时,湿周χ和水力半径R分别是()。
与横道计划相比,网络计划的特点有()。
事件一中A公司的做法是否符合国家有关法律规定?其行为属于什么行为?根据《建设工程质量管理条例》的规定,工程承发包过程中的违法分包行为有哪些?
航空器在航行中曾经有霍乱病例发生,但在到达前该病员已经离去的,为染有霍乱。()
某期货公司在客户出现保证金不足且呈持续状态的情况下,允许其继续进行期货交易,此后期货公司陆续对上述客户强行平仓发生客户穿仓损失,该期货公司在客户出现巨额穿仓损失并未追加保证金情况下,未能及时采取相关措施和未进行相应的会计核算,同时在报送监管部门的财务报表中
根据下列资料,完成以下问题。2013年2月末,本外币贷款余额69.28万亿元,同比增长16.1%。人民币贷款余额64.70万亿元,同比增长15.0%,分别比上月末和上年同期低0.4个和0.2个百分点。当月人民币贷款增加6200亿元,同比少增907
对于在学校有严重不良行为的未成年人,可以按照有关规定将其送到()继续接受教育。
《学记》云:“君子之教,喻也;道而弗牵,强而弗抑,开而弗达。”这句话体现的教学原则是()。
从所给的四个选项中,选择最合适的一个填入问号处,使之呈现一定的规律性。
最新回复
(
0
)