首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
A,B,C均是n阶矩阵,且AB=O,AC+C=O.如秩(B)+秩(C)=n,证明A∽A,并求对角阵A.
A,B,C均是n阶矩阵,且AB=O,AC+C=O.如秩(B)+秩(C)=n,证明A∽A,并求对角阵A.
admin
2016-11-03
34
问题
A,B,C均是n阶矩阵,且AB=O,AC+C=O.如秩(B)+秩(C)=n,证明A∽A,并求对角阵A.
选项
答案
设B,C的n个列向量分别为 B=[β
1
,β
2
,…,β
n
], C=[η
1
,η
2
,…,η
n
], 则由AB=O得A[β
1
,β
2
,…,β
n
]=O,即 Aβ
i
=0=0β
i
(i=1,2,…,n). 又设秩(B)=k,则0为A的特征值,且属于特征值0的线性无关的特征向量有k个. 又由AC+C一0得到AC=-C,即 A[η
1
,η
2
,…,η
n
]=-[η
1
,η
2
,…,η
n
], 则 Aη
i
=-η
i
=(一1)η
i
, 故一1为A的特征值.因 秩(C)=n一秩(B)=n一k, 故属于特征值一1的线性无关的特征向量共有n一k个.因而A有n个线性无关的特征向量,故A∽A.且 [*]
解析
将所给矩阵方程都转化为A的特征值、特征向量的有关问题证明A有n个线性无关的特征向量.
转载请注明原文地址:https://kaotiyun.com/show/OTu4777K
0
考研数学一
相关试题推荐
设X服从[a,b]上的均匀分布,证明αX+β(α>0)服从[aα+β,bα+β]上的均匀分布.
在某公共汽车站甲、乙、丙三人分别等1,2,3路公共汽车.设每个人等车时间(单位:min)均服从[0,5]上的均匀分布,求三人中至少有两人等车时间不超过2min的概率.
已知函数f(x)在区间(1-δ,1+δ)内具有二阶导数,f’(x)单调减少;且f(1)=f’(1)=1,则
设α1,α2,…,αr,β都是n维向量,β可由α1,α2,…,αr线性表示,但β不能由α1,α2,…,αr-1线性表示,证明:αr可由α1,α2,…,αr-1,β线性表示.
设A,B为同阶方阵,(I)如果A,B相似,试证A,B的特征多项式相等.(Ⅱ)举一个二阶方阵的例子说明(I)的逆命题不成立.(Ⅲ)当A,B均实对称矩阵时,试证(I)的逆命题成立.
设函数f(x)在[1,+∞)上连续,若由曲线y=f(x),直线x=1,x=t(t>1)与x轴所围成的平面图形绕x轴旋转一周所成的旋转体积为V(t)=π/3[t2f(t)-f(1)],试求y=f(x)所满足的微分方程,并求该微分方程满足条件y|x=2=2/9
考虑二元函数的下面4条性质(I)f(x,y)在点(xo,yo)处连续;(Ⅱ)f(x,y)在点(xo,yo)处的两个偏导数连续;(Ⅲ)f(x,y)在点(xo,yo)处可微;(Ⅳ)f(x,y)在点(xo,yo)处的两个偏导数存在.
设A为n阶实对称矩阵,秩(A)=n,Aij是A=(aij)nxm中元素aij(i,j=1,2,…,n)的代数余子式,二次型f(x1,x2…,xn)=(I)记X=(x1,x2,…,xn)T,把f(x1,x2,…,xn)写成矩阵形式,并证明二次型f(x)
(1998年试题,九)设y=f(x)是区间[0,1]上的任一非负连续函数.试证存在x0∈(0,1),使得在区间[0,x0]上以f(x0)为高的矩形面积,等于在区间[x0,1]上以y=f(x)为曲边的曲边梯形面积;
(13年)设L1:x2+y2=1,L2:x2+y2=2,L3:x2+2y2=2,L1:2x2+y2=2为四条逆时针方向的平面曲线.记(i=1,2,3,4),则max{I1,I2,I3,I4}=
随机试题
试述利益集团和民族主义对国际市场营销活动的影响。
膝关节正位片中,髌骨与股骨重叠,此现象称
寻常疣的外治,应选用
可用灭菌溶液微粒结晶法制备鸦胆子油注射液属于
以下对证券投资基金当事人说法错误的是:()
在混凝土及钢筋混凝土芯柱施工中,待砌筑砂浆强度大于多少时,方可灌注芯柱混凝土?
请认真阅读下列材料,并按要求作答。
当下中国文学描写官斗、职斗、婚斗、家斗的作品比较流行,这些作品中包含了不少对日常生活中权术和心机的描写。这样的写作有可能削弱文学对社会的积极影响。文学有必要与正义结盟,形成诗性正义,以提升生活。作者想表达的主要观点是()。
A、游泳B、办护照C、买东西D、办签证延期D男的说“我的签证要到期了,我得去办延期”,所以选D。
A、Thewomanishavingajobinterview.B、Thewomanisaskingforapromotion.C、Thewomanisapplyingforajob.D、Thewomanis
最新回复
(
0
)