首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
A,B,C均是n阶矩阵,且AB=O,AC+C=O.如秩(B)+秩(C)=n,证明A∽A,并求对角阵A.
A,B,C均是n阶矩阵,且AB=O,AC+C=O.如秩(B)+秩(C)=n,证明A∽A,并求对角阵A.
admin
2016-11-03
38
问题
A,B,C均是n阶矩阵,且AB=O,AC+C=O.如秩(B)+秩(C)=n,证明A∽A,并求对角阵A.
选项
答案
设B,C的n个列向量分别为 B=[β
1
,β
2
,…,β
n
], C=[η
1
,η
2
,…,η
n
], 则由AB=O得A[β
1
,β
2
,…,β
n
]=O,即 Aβ
i
=0=0β
i
(i=1,2,…,n). 又设秩(B)=k,则0为A的特征值,且属于特征值0的线性无关的特征向量有k个. 又由AC+C一0得到AC=-C,即 A[η
1
,η
2
,…,η
n
]=-[η
1
,η
2
,…,η
n
], 则 Aη
i
=-η
i
=(一1)η
i
, 故一1为A的特征值.因 秩(C)=n一秩(B)=n一k, 故属于特征值一1的线性无关的特征向量共有n一k个.因而A有n个线性无关的特征向量,故A∽A.且 [*]
解析
将所给矩阵方程都转化为A的特征值、特征向量的有关问题证明A有n个线性无关的特征向量.
转载请注明原文地址:https://kaotiyun.com/show/OTu4777K
0
考研数学一
相关试题推荐
设f(x)在(-∞,+∞)上可导,(1)若f(x)为奇函数,证明fˊ(x)为偶函数;(2)若f(x)为偶函数,证明fˊ(x)为奇函数;(3)若f(x)为周期函数,证明fˊ(x)为周期函数.
设A为n阶矩阵,满足AAT=E(E为n阶单位阵,AT是A的转置矩阵),丨A丨
设随机变量X服从正态分布N(0,1),对给定的α∈(0,1),数uα满足P{X>uα}=α,若P{丨X丨
A、发散B、条件收敛C、绝对收敛D、敛散性不确定C
方程xy2+y-l=0能否确定y是x的隐函数?若能,试写出它的显函数形式.
设随机变量X服从正态分布N(μ,σ2)(σ>0),且二次方程y2+4y+X=0无实根的概率为1/2,则μ=___________.
设矩阵,且|A|=-1.又设A的伴随矩阵A*有特征值λ0,属于λ0的特征向量为a=(-1,-1,1)T,求a,b,c及λ0的值.
已知A是2×4矩阵,齐次方程组Ax=0的基础解系是η1=(1,3,0,2)T,η2=(1,2,一1,3)T,又知齐次方程组Bx=0的基础解系是β1=(1,1,2,1)T,β2=(0,一3,1,a)T,如果齐次线性方程组Ax=0与Bx=0有非零公共解,求
设f(x,y)是连续函数,则
计算曲面积分,其中∑是曲面2x2+2y2+z2=4的外侧.
随机试题
下列各句中,“弛”用本义的一项是()
HowtoKillBadInsectsChemicalMethodsThesesolutionstoinsectproblemsareoftennotworthwhilebecause:a)Theyareeffect
患者,男,65岁。既往体健,右下腹痛10小时,伴恶心、呕吐。查体:体温38.5℃,右下腹明显压痛、反跳痛,右肾区叩击痛阴性。白细胞计数为18×109/L,血、尿淀粉酶正常。最佳治疗方案为
男,7岁。因“发音不清”前来就诊,在进行临床检查与鉴别诊断时,应考虑的疾病中不包括
肺炎球菌肺炎出现机化性肺炎是由于()
股息的来源是公司的()。
许多建筑或框架都喜欢采用三角形而不用四边形,其中主要原因是( )。
知觉的恒常性是指知觉系统能在一定范围内保持对客观事物的稳定的认识,而不随知觉条件或感觉映像模式的改变而改变。据此,下列不是知觉的恒常性的是( )。
新民主主义经济纲领的内容有()
Thestudentsfailedtomeetthenecessary______foradmissiontothecourse.
最新回复
(
0
)