首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为m阶实对称阵且正定,B为m×n实矩阵,试证:BTAB为正定矩阵的充分必要条件是B的秩r(B)=n.
设A为m阶实对称阵且正定,B为m×n实矩阵,试证:BTAB为正定矩阵的充分必要条件是B的秩r(B)=n.
admin
2017-06-26
40
问题
设A为m阶实对称阵且正定,B为m×n实矩阵,试证:B
T
AB为正定矩阵的充分必要条件是B的秩r(B)=n.
选项
答案
必要性:设B
T
AB正定,则对任意n维非零列向量χ,有χ
t
(B
T
AB)χ>0,即(Bχ)
T
A(Bχ)>0,于是Bχ≠0.因此,Bχ=0只有零解,从而有r(B)=n. 充分性 因(B
T
AB)
T
=B
T
A
T
B=B
T
AB,故B
T
AB为实对称矩阵,若r(B)=n,则齐次线性方程组Bχ=0只有零解,从而对任意n维非零列向量χ,有Bχ≠0,又A为正定矩阵,所以对于Bχ≠0,有(Bχ)
T
A(Bχ)>0,于是当χ≠0时,χ
T
(B
T
AB)χ=(Bχ)
T
A(Bχ)>0,故B
T
AB为正定矩阵.
解析
转载请注明原文地址:https://kaotiyun.com/show/OVH4777K
0
考研数学三
相关试题推荐
设周期函数f(x)在(-∞,+∞)内可导,周期为4.又,则曲线y=f(x)在点(5,f(5))处的切线的斜率为().
设每天生产某种商品g单位时的固定成本为20元,边际成本函数C’(q)=0.4g+2元/件.求成本函数C(g).如果该商品的销售价为18元/件,并且所有产品都能够售出,求利润函数L(q),并问每天生产多少件产品时才能获得最大利润?
设λ0是n阶矩阵A的特征值,且齐次线性方程组(λ0E-A)X=0的基础解系为η1,η2,则A的属于λ0的全部特征向量为().
某公司可通过电台及报纸两种方式做销售某种商品的广告,根据统计资料,销售收入R(万元)与电台广告费用x1(万元)及报纸广告费用x2(万元)之间的关系有如下经验公式:R=15+14x1+32x2=-8x1x2-2x12-10x22,在广告费用不限的情况下,求最
设n阶方程A=(a1,a2,…,an),B=(β1,β2,…,βn),AB=(γ1,γ2,γn),记向量组(Ⅰ):a1,a2,…,an(Ⅱ):β1,β2,…,βn,(Ⅲ):γ1,γ2,…,γn,如果向量组(Ⅲ)线性相关,则().
二次型f(x1,x2,x3)=(x1+x2)2+(x2-x3)2+(x3+x1)2的秩为_________.
设A为n阶非零矩阵,E为n阶单位矩阵.若A3=0,则().
设三阶矩阵A的特征值为λ1=-1,λ2=0,λ3=1,则下列结论不正确的是().
已知三元二次型xTAx的平方项系数均为0,设α=(1,2,一1)T且满足Aα=2α.求该二次型表达式;
设函数y=y(x)由方程ylny-x+y=0确定,试判断曲线y=y(x)在点(1,1)附近的凹凸性.
随机试题
试用新药时,需要提供的资料不包括
具有“疾滑利”特性的气是
A.穿过棘孔的动脉分支B.穿过下颌孔的动脉分支C.穿过眶下孔的动脉分支D.穿过切牙孔的动脉分支E.穿过蝶腭孔的动脉分支眶下动脉是
诉讼时效因当事人一方提出要求而中断,下列哪一情形不能产生诉讼时效中断的效力?()
以下有关职业道德基本原则的说法中,正确的有()。
火星的甲烷标志不断变化,这可能是地下生物圈活动的结果。另外,这些标志的附近地表有大量的硫酸盐黄钾铁矾,这是一种在地球温泉里发现的矿盐,尽管像温泉这样的环境不适合生命存在,但科学家在这样的环境里已经发现了生命体。这段文字强调的是()。
下列思想家属于英国启蒙思想家的有()。①卢梭②洛克③霍布斯④斯宾诺莎
“三个代表”重要思想是马克思主义中国化的最新理论成果,它与马克思列宁主义、毛泽东思想、邓小平理论是一脉相承的统一的科学理论。这种一脉相承具体表现在()。
农村义务教育除按省级以上人民政府及行政主管机关规定收取的费用外,不得向农民和学生收取其他费用。()
Nobodywenttovisithimwhenhewasaccusedofkilling,______?
最新回复
(
0
)