首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(1)求方程组AX=0的一个基础解系. (2)a,b,c为什么数时AX=B有解? (3)此时求满足AX=B的通解.
(1)求方程组AX=0的一个基础解系. (2)a,b,c为什么数时AX=B有解? (3)此时求满足AX=B的通解.
admin
2018-11-20
74
问题
(1)求方程组AX=0的一个基础解系.
(2)a,b,c为什么数时AX=B有解?
(3)此时求满足AX=B的通解.
选项
答案
对AX=B的增广矩阵(A|B)作初等行变换化为阶梯形矩阵: [*] 得到AX=0的同解方程组: [*] 求得基础解系:(一2,1,1,0)
T
,(1,0,0,1)
T
. (2)AX=B有解[*]r(A|B)=r(A)=2,得a=6,b=一3,c=3. (3)建立3个线性方程组,它们的系数矩阵都是A,常数列依次为B的各列.则X的各列依次是它们的解.它们的导出组都是AX=0,已经有了基础解系(一2,1,1,0)
T
,(1,0,0,1)
T
,只用再各求一个特解就可得到通解.可以一起用矩阵消元法求它们的特解: [*] 于是(3/2,3/2,0,0)
T
,(一3/2,3/2,0,0)
T
,(0,1,0,0)
T
依次是这3个方程组的特解.AX=B的通解为: [*],其中c
1
,c
2
,c
3
,c
4
,c
5
,c
6
任意. 或者表示为: [*]其中H为任意2×3矩阵.
解析
转载请注明原文地址:https://kaotiyun.com/show/OfW4777K
0
考研数学三
相关试题推荐
设α1,…,αn为n个m维向量,且m<n,证明:α1,…,αn线性相关.
设α1,α2,α3线性无关,β1可由α1,α2,α3线性表示,β2不可由α1,α2,α3线性表示,对任意的常数k有().
飞机以匀速υ沿y轴正向飞行,当飞机行至0时被发现,随即从x轴上(x0,0)处发射一枚导弹向飞机飞去(x0>0),若导弹方向始终指向飞机,且速度大小为2υ.(1)求导弹运行的轨迹满足的微分方程及初始条件;(2)导弹运行方程.
若矩阵A=,B是三阶非零矩阵,满足AB=0,则t=________.
设二维非零向量α不是二阶方阵A的特征向量.证明α,Aα线性无关;
设有四个线性无关的特征向量,求A的特征值与特征向量,并求A2010.
求由方程x2+y3一xy=0确定的函数在x>0内的极值,并指出是极大值还是极小值.
已知α1,α2,α3是非齐次线性方程组Ax=b的三个不同的解,那么向量α1一α2,α1+α2一2α3,(α2一α1),α1一3α2+2α3中,是方程组Ax=0解向量的共有()
随机试题
Therearesome______flowersonthedesk.
耳穴定位中,在三角窝后1/3的下部,即三角窝5区的耳穴是:
关于X线影像增强器的描述,错误的是
医师的下列行为不属于违法违规的是
男性,28岁,因江水泛滥,饮用江水,突然出现剧烈腹泻,随后呕吐,由水样物转为“米泔水”样物,最可能的诊断是
定期将建设工程项目实施进展情况在投资项目在线审批监管平台上发布的是()
临时用电组织设计及变更时必须经过的批准人是()。
甲注册会计师拟运用抽样方法设计样本,你认为他的哪些判断是正确的( )。甲注册会计师在对应收账款分层次选择好样本后,对这些样本全部发函,他是这样做的,其中错误的有( )。
按内容分,通报可以分为表彰性通报、批评性通报和情况通报。()
ExchangeRates:ABriefHistoryofExchangeRatesForcenturies,thecurrenciesoftheworldwerebackedbygold.Thatis,a
最新回复
(
0
)