首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设有向量组(Ⅰ):α1=(1,0,2)T,α2=(1,1,3)T,α3=(1,一1,a+2)T和向量组(Ⅱ):β1=(1,2,a+3)T,β2=(2,1,a+6)T,β3=(2,1,a+4)T.试问:当a为何值时,向量组(Ⅰ)与(Ⅱ)等价?当a为何值时,向
设有向量组(Ⅰ):α1=(1,0,2)T,α2=(1,1,3)T,α3=(1,一1,a+2)T和向量组(Ⅱ):β1=(1,2,a+3)T,β2=(2,1,a+6)T,β3=(2,1,a+4)T.试问:当a为何值时,向量组(Ⅰ)与(Ⅱ)等价?当a为何值时,向
admin
2018-08-03
51
问题
设有向量组(Ⅰ):α
1
=(1,0,2)
T
,α
2
=(1,1,3)
T
,α
3
=(1,一1,a+2)
T
和向量组(Ⅱ):β
1
=(1,2,a+3)
T
,β
2
=(2,1,a+6)
T
,β
3
=(2,1,a+4)
T
.试问:当a为何值时,向量组(Ⅰ)与(Ⅱ)等价?当a为何值时,向量组(Ⅰ)与(Ⅱ)不等价?
选项
答案
因行列式|α
1
α
2
α
3
|=a+1≠0,故当a≠一1时方程组x
1
α
1
+x
2
α
2
+x
3
α
3
=β
t
(i=1,2,3)均有解(且有惟一解),所以向量组(Ⅱ)可由(Ⅰ)线性表示.又由行列式|β
1
β
2
β
3
|=6≠0,同理可知向量组(Ⅰ)可由(Ⅱ)线性表示.故当a≠一1时,(Ⅰ)与(Ⅱ)等价.当a=一1时,由于秩[α
1
α
2
α
3
]≠秩[α
1
α
2
α
3
┆iβ
1
],故方程组x
1
α
1
+x
2
α
2
+x
3
α
3
=β
1
无解,即β
1
不能由(Ⅰ)线性表示,因此(Ⅰ)与(Ⅱ)不等价.
解析
转载请注明原文地址:https://kaotiyun.com/show/Org4777K
0
考研数学一
相关试题推荐
设f(x)在[0,1]上有定义,且exf(x)与e-f(x)在[0,1]上单调增加.证明:f(x)在[0,1]上连续.
设=A,证明:数列{an}有界.
设二维随机变量(X,Y)服从二维正态分布,且X~N(1,32),Y~N(0,42),且X,Y的相关系数为一.(1)求E(Z),D(Z);(2)求ρXY;(3)X,Z是否相互独立?为什么?
设随机变量X的密度函数为f(x)=,则E(X)=___________,D(X)___________.
设函数f(x)在x=1的某邻域内有定义,且满足|f(x)一2ex|≤(x一1)2,研究函数f(x)在x=1处的可导性.
设f(x)是连续函数.
设A为n阶矩阵,A11≠0.证明:非齐次线性方程组AX=b有无穷多个解的充分必要条件是A*b=0.
设a0=1,a1=一2,a2=(n≥2).证明:当|x|<1时,幂级数anxn收敛,并求其和函数S(x).
在全概率公式P(B)=P(Ai)P(B|AI)中,除了要求条件B是任意随机事件及P(Ai)>0(i=1,2,…,n)之外,我们可以将其他条件改为
设随机变量X服从标准正态分布N(0,1),在X=x(一∞<x<+∞)的条件下,随机变量Y服从正态分布N(x,1).求在Y=y条件下关于X的条件概率密度.
随机试题
钢丝绳可分为光面钢丝绳、()和其他钢丝绳3类。
简述亚当·斯密的贡献。
如是者亦有年,犹不改,然后识古书之正伪,与虽正而不至焉者,昭昭然白黑分矣。
某工程合同工期为37天,合同价为360万元,采用清单计价模式下的单价合同,分部分项工程量清单项目单价、措施项目单价均采用承包商的报价,规费为人材机费用和管理费与利润之和的3.3%,税金为人材机费用与管理费、利润、规费之和的3.4%。业主草拟的部分施工合同条
在我国新的课程结构中,高中阶段课程主要属于()。
根据《中华人民共和国宪法》和《中华人民共和国物权法》规定,下列自然资源中不专属于国家所有的财产是()。
根据下列资料。回答下列问题:2012年8月上海市接待外国游客主要客源地中,同比增长量最多的国家是:
A.两侧下颌体的正中联线B.正中联合两旁,近下颌体下缘处,左右各有一隆起C.从颏结节经颏孔支下向后上延至下颌支前缘的骨嵴D.下颌骨的水平部E.下颌骨的垂直部下颌体是指()。
某企业采用资产负债表债务法核算所得税,上期期末“递延所得税资产”科目的借方余额为750万元,适用所得税税率15%,本期经计算可抵扣暂时性差异为2100万元,本期适用的所得税税率为33%。本期“递延所得税资产”科目的发生额为()万元。
Sometimeinnextcentury,thefamiliarearly-morningnewspaperonthefrontdoorwilldisappear.Andinsteadofreadingyournew
最新回复
(
0
)