首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设随机变量X与Y相互独立,且都在[0,1]上服从均匀分布,试求: (Ⅰ)U=XY的概率密度fU(u); (Ⅱ)V=|X-Y|的概率密度fV(v).
设随机变量X与Y相互独立,且都在[0,1]上服从均匀分布,试求: (Ⅰ)U=XY的概率密度fU(u); (Ⅱ)V=|X-Y|的概率密度fV(v).
admin
2018-06-15
23
问题
设随机变量X与Y相互独立,且都在[0,1]上服从均匀分布,试求:
(Ⅰ)U=XY的概率密度f
U
(u);
(Ⅱ)V=|X-Y|的概率密度f
V
(v).
选项
答案
由于X与Y相互独立且密度函数已知,因此我们可以用两种方法:分布函数法与公式法求出U、V的概率密度. (Ⅰ)分布函数法.由题设知(X,Y)联合概率密度 f(x,y)=f
X
(x)f
Y
(y) [*] 所以U=XY的分布函数为(如图3.3) [*] F
U
(u)=P{XY≤u}=[*]f(x,y)dxdy. 当u≤0时,F
U
(u)=0;当u≥1时,F
U
(u)=1;当0<u<1时, F
U
(u)=∫
0
u
du∫
0
1
dy+∫
u
1
dx∫
0
u/x
dy=u+∫
u
1
u/xdx=u-ulinu. 综上得 [*] (Ⅱ)公式法.记Z=X-Y=X+(-Y),其中X与(-Y)独立,概率密度分别为 [*] 由卷积公式得Z的概率密度 f
Z
(z)=∫
-∞
+∞
(z-y)f
-Y
(y)dy=∫
-1
0
f
X
(z-y)dy [*] V=|X-Y|=|Z|的分布函数为F
V
(v)=P{|Z|≤v},易得 当v≤0时,F
V
(v)=0;当v>0时,F
V
(v)=P{-v≤Z≤v}=∫
-v
v
(z)dz; 由此知,当0<v<1时,F
V
(v)=∫
-v
0
(x+1)+∫
0
v
(1-z)=2v-v
2
; 当v≥1时,F
V
(v)=∫
-v
-1
0dz+∫
-1
0
(z+1)dz+∫
0
1
(1-z)dz+∫
1
v
0dz=1. 综上得F
V
(v) [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/Oxg4777K
0
考研数学一
相关试题推荐
已知向量组α1,α2,…,αs+1(s>1)线性无关,βi=αi+tαi+1,i=1,2,…,s.证明:向量组β1,β2,…,βs线性无关.
设随机变量X在[0,π]上服从均匀分布,求Y=sinX的密度函数.
设f(x),g(x)在[a,b]上二阶可导,g’’(x)≠0,f(a)=f(b)=g(a)=g(b)=0.证明:在(a,b)内至少存在一点ξ,使
设曲线f(x)=xn在点(1,1)处的切线与z轴的交点为(x0,0),计算
设φ(y)为连续函数.如果在围绕原点的任意一条逐段光滑的正向简单封闭曲线l上,曲线积分其值与具体l无关,为同一常数k.如果φ(y)具有连续的导数,求φ(y)的表达式.
f(x)在[0,1]上有连续导数,且f(0)=0,证明:存在ξ∈[0,1],使得
曲线积分(2xcosy+ysinx)dx-(x2sinynacosx)dy,其中曲线为位于第一象限中的圆弧x2+y2=1,A(1,0),B(0,1),则I为()
—批种子中良种占之差小于0.01的概率.
随机试题
恶性肿瘤的诊断,最重要的依据是
原发性免疫缺陷病治疗错误的是
胡某,男,70岁,反复咳嗽、咳痰l0余年。近3年来劳累后心悸、气促。入院时发绀明显。呼吸困难,应取
在网络计划工期优化过程中,当出现多条关键线路时,在考虑对质量、安全影响的基础上,优先选择的压缩对象应是各条关键线路上( )。
衡量儿童体格发育常用的形态指标是()。
(2016·山西)学生在小组或团队中,通过任务分解、责任分工、协同互助,来完成其同的学习准备,这种学习方式属于()(常考)
《公安机关人民警察奖励条令》第3条规定,公安机关奖励工作的原则有()。
一个人,一个家庭,一个国家,具备了节俭的美德,具有艰苦奋斗的精神,那么,无论环境多么__________,生活多么__________,道路多么__________,都会顽强生存,一步步走出困境,最终走向强盛。填入划横线部分最恰当的一项是()。
Itisstrictly______thataccesstoconfidentialdocumentsisdeniedtoallbutafew.
Whatdoesthewomanthinkoftheroommate’smusic?
最新回复
(
0
)