首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设随机变量X与Y相互独立,且都在[0,1]上服从均匀分布,试求: (Ⅰ)U=XY的概率密度fU(u); (Ⅱ)V=|X-Y|的概率密度fV(v).
设随机变量X与Y相互独立,且都在[0,1]上服从均匀分布,试求: (Ⅰ)U=XY的概率密度fU(u); (Ⅱ)V=|X-Y|的概率密度fV(v).
admin
2018-06-15
37
问题
设随机变量X与Y相互独立,且都在[0,1]上服从均匀分布,试求:
(Ⅰ)U=XY的概率密度f
U
(u);
(Ⅱ)V=|X-Y|的概率密度f
V
(v).
选项
答案
由于X与Y相互独立且密度函数已知,因此我们可以用两种方法:分布函数法与公式法求出U、V的概率密度. (Ⅰ)分布函数法.由题设知(X,Y)联合概率密度 f(x,y)=f
X
(x)f
Y
(y) [*] 所以U=XY的分布函数为(如图3.3) [*] F
U
(u)=P{XY≤u}=[*]f(x,y)dxdy. 当u≤0时,F
U
(u)=0;当u≥1时,F
U
(u)=1;当0<u<1时, F
U
(u)=∫
0
u
du∫
0
1
dy+∫
u
1
dx∫
0
u/x
dy=u+∫
u
1
u/xdx=u-ulinu. 综上得 [*] (Ⅱ)公式法.记Z=X-Y=X+(-Y),其中X与(-Y)独立,概率密度分别为 [*] 由卷积公式得Z的概率密度 f
Z
(z)=∫
-∞
+∞
(z-y)f
-Y
(y)dy=∫
-1
0
f
X
(z-y)dy [*] V=|X-Y|=|Z|的分布函数为F
V
(v)=P{|Z|≤v},易得 当v≤0时,F
V
(v)=0;当v>0时,F
V
(v)=P{-v≤Z≤v}=∫
-v
v
(z)dz; 由此知,当0<v<1时,F
V
(v)=∫
-v
0
(x+1)+∫
0
v
(1-z)=2v-v
2
; 当v≥1时,F
V
(v)=∫
-v
-1
0dz+∫
-1
0
(z+1)dz+∫
0
1
(1-z)dz+∫
1
v
0dz=1. 综上得F
V
(v) [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/Oxg4777K
0
考研数学一
相关试题推荐
设,B=(E+A)-1(E-A),则(E+B)-1=________
设函数f(x,y)连续,且f(x,y)=x+∫∫Dyf(u,v)dudv,其中D由,x=1,y=2围成,求f(x,y).
若随机变量序列X1,X2,…,Xn,…满足条件试证明:{Xn}服从大数定律.
设f(x),g(x)在[a,b]上二阶可导,g’’(x)≠0,f(a)=f(b)=g(a)=g(b)=0.证明:在(a,b)内至少存在一点ξ,使
曲线在t=1处的曲率k=_______
已知f(x1,x2,x3)=的秩为2.试确定参数c及二次型对应矩阵的特征值,并问f(x1,x2,x3)=1表示何种曲面.
设总体X,Y相互独立且都服从N(μ,σ2)分布,(X1,X2,…,Xm)与(Y1,Y2,…,Yn)分别为来自总体X,Y的简单随机样本.证明:S2=为参数σ2的无偏估计量.
设f(x)=x-sinxcosxcos2x,g(x)=则当x→0时f(x)是g(x)的
已知f’(x)=arctanx2,则
随机试题
清代对于州县一级审理民事案件、轻微刑事案件等自理案件规定了审理期限,为()。
在Word2003的“文件”下拉菜单的下部,通常会列出若干文件,这些文件是_______。
肛门狭窄的处理中,以下哪一项是错误的:
可以翻转肾上腺素升压作用的是
以下哪项检查有助于诊断若需进行触诊检查,则应该
DNA的一级结构是
外敷能刺激皮肤,引起发泡,故皮肤过敏者应慎用有毒,不可过量服用,咳痰不利者慎服
农民集体所有的土地由农村集体经济组织或者( )经营管理。
下列程序的运行结果是______。#defineP(a)printf("%d",a)main(){intj,a[]={1,2,3,4,5,6,7},i=5;
Whatdoestheword"cheer"(Line2,Para.1)imply?HumansonEarthtodayarecharacterizedby______.
最新回复
(
0
)