首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知α1,α2,…,αs线性无关,β可由α1,α2,…,αs线性表出,且表示式的系数全不为零.证明:α1,α2,…,αs,β中任意s个向量线性无关.
已知α1,α2,…,αs线性无关,β可由α1,α2,…,αs线性表出,且表示式的系数全不为零.证明:α1,α2,…,αs,β中任意s个向量线性无关.
admin
2016-07-22
31
问题
已知α
1
,α
2
,…,α
s
线性无关,β可由α
1
,α
2
,…,α
s
线性表出,且表示式的系数全不为零.证明:α
1
,α
2
,…,α
s
,β中任意s个向量线性无关.
选项
答案
用反证法.设α
1
,α
2
,…,α
s
,β中任意s个向量组α
1
,α
2
,…,α
i-1
,α
i+1
,α
s
,β线性相关,则存在不全为零的k
1
,k
2
,…,k
i-1
,k
i+1
,k
s
,k,使得 k
1
α
1
+…+k
i-1
α
i-1
+k
i+1
α
i+1
+…+k
s
α
s
+kβ=0. ① 另一方面,由题设 β=l
1
α
1
+l
2
α
2
+…+l
i
α
i
+…+l
s
α
s
, 其中l
i
≠0,i=1,2,…,s.代入上式,得 (k
1
+kl
1
)α
1
+(k
2
+kl
2
)α
2
+…+(k
i-1
+kl
i-1
)α
i-1
+kl
i
α
i
+(l
i+1
+kl
i+1
)α
i+1
+…+(k
s
+kl
s
)α
s
=0. 因已知α
1
,α
2
,…,α
s
线性无关,从而由kl
i
=0,l
i
≠0,故k=0,从而由①式得k
1
,k
2
,…,k
i-1
,k
i+1
,k
s
均为0,矛盾. 故α
1
,α
2
,…,α
s
,β中任意s个向量线性无关.
解析
转载请注明原文地址:https://kaotiyun.com/show/DYw4777K
0
考研数学一
相关试题推荐
区域D={(x,y)|x2+y2≤1,x≥0),则=().
设f(x)=,则以2π为周期的傅里叶级数在x=π处收敛于________.
设u=x+ysinu确定了可微的函数u=u(x,y),证明:
设平面区域D={(x,y)|1≤x2+y2≤4,x≥0.y≥0}.计算
设z=z(u,v)具有二阶连续偏导数,且z=z(x-2y,x+3y)满足求z=z(u,v)所满足的方程,并求z(u,v)的一般表达式.
设函数f(x)在区间[0,1]上具有二阶导数,且f(1)>0,<0.证明:(I)方程f(x)=0在区间(0,1)内至少存在一个实根;(Ⅱ)方程f(x)f”(x)+[f’(x)]2=0在区间(0,1)内至少存在两个不同的实根.
设函数f(x)在(0,+∞)上可导,f(0)=0,且存在原函数,其反函数为g(x),若求由x轴,x=1及y=f(x)所围成的平面图形绕y轴旋转一周所得旋转体的体积.
设二阶常系数微分方程y〞+αyˊ+βy=ye2x有一个特解为y=e2x+(1+x)ex,试确定α,β,γ和此方程的通解.
求极限1/x.
设4阶方阵A的秩为2,则其伴随矩阵A*的秩为__________.
随机试题
项目经济影响的层次分为()。
根据《水利工程建设项目施工监理规范》SL288—2014,监理单位对混凝土质量进行跟踪检测时,其试样应不少于承包人检测数量的()。
DES__________________________
董事会会议由1/3以上无关联关系董事出席即可举行。()
下列表述不符合土地增值税的是()。
甲公司为上市公司,2020年有关资料如下:(1)甲公司2020年年初的递延所得税资产借方余额为140万元,递延所得税负债贷方余额为10万元,具体构成如下:单位:万元(2)甲公司2020年度实现的利润总额为1500万元。2020年度相关交易
文书承办是根据(),对文件进行具体处理。
教生物课的李老师为了让学生更真切地了解导管功能,他事先把带叶的枝条插入红色溶液里,放在温暖而有阳光的地方晒几小时。上课时,将枝条一段一段剪下来,分到学生手里。他一边讲一边提问,学生一边剥一边思考一边回答。简要说明李老师采用的是什么教学方法?运用这种方法
流感通常由受感染的个人传染给在他附近工作的人,因此抑制流感症状的药实际上增加流感的受感染人数,因为这种抑制流感的药使本应在家中卧床休息的人,在受感染时返回到工作场所。如果以上论述正确,下列哪项最有力地反驳了这一推断?
HTML的正式名称是(61)。
最新回复
(
0
)