首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
求线性方程组的通解,并求满足条件x12=x22的所有解.
求线性方程组的通解,并求满足条件x12=x22的所有解.
admin
2018-06-14
99
问题
求线性方程组
的通解,并求满足条件x
1
2
=x
2
2
的所有解.
选项
答案
对增广矩阵作初等行变换,有 [*] 方程组的解:令x
3
=0,x
4
=0得x
2
=1,x
1
=2.即α=(2,1,0,0)
T
. 导出组的解: 令x
3
=1,x
4
=0得x
2
=3,x
1
=1.即η
1
=(1,3,1,0)
T
; 令x
3
=0,x
4
=1得x
2
=0,x
1
=一1.即η
2
=(一1,0,0,1)
T
. 因此方程组的通解是:(2,1,0,0)T+k
1
(1,3,1,O)T+k
2
(一1,0,0,1)
T
. 而其中满足x
1
2
=x
2
2
的解,即(2+k
1
—k
2
)
2
=(1+3k
1
)
2
. 那么 2+k
1
—k
2
=1+3k
1
或2+k
1
一k
2
=一(1+3k
1
), 即 k
2
=1—2k
1
或k
2
=3+4k
1
. 所以(1,l,0,1)
T
+k(3,3,1,一2)
T
和(一1,1,0,3)
T
+k(一3,3,1,4)
T
为满足x
1
2
=x
2
2
的所有解.
解析
转载请注明原文地址:https://kaotiyun.com/show/P1W4777K
0
考研数学三
相关试题推荐
设函数f(x)在区间[0,3]上连续,在(0,3)内可导,且f(0)+f(1)+f(2)=3,f(3)=1.证明:存在ξ∈(0,3),使得f’(ξ)=0.
求微分方程的通解.
设f(x)在[a,b]上有定义,M>0且对任意的x,y∈[a,b],有|f(x)一f(y)|≤M|x一y|k.证明:当k>1时,f(x)=常数.
设xy=xf(z)+yg(z),且zf’(z)+yg’(z)≠0,其中z=z(x,y)是x.y的函数.证明:
求下列极限:
已知齐次线性方程组同解.求a,b,c的值.
设A=(Ⅰ)求满足Aξ2=ξ1,A2ξ3=ξ1的所有向量ξ2,ξ3;(Ⅱ)对(Ⅰ)中任意向量ξ2,ξ3,证明ξ1,ξ2,ξ3线性无关.
设矩阵A与B相似,且A=.求可逆矩阵P,使P-1AP=B.
已知A是n阶对称矩阵.B是n阶反对称矩阵,证明A-B2是对称矩阵.
设A是n阶矩阵,若存在正整数k,使线性方程组Akx=0有解向量α,且Ak-1α≠0.证明:向量组α,Aα,…,Ak-1α是线性无关的.
随机试题
下列病变中,属于原发性肺结核病的是
不属于肝门结构的是
下列哪项不是危害健康的行为
某公司拥有一栋旧写字楼,《房屋所有权证》记载的建筑面积为460m2。因年久失修,经房屋鉴定部门鉴定为危房,由上级总公司批准改建,建筑面积可增至600m2,该公司认为建600m2经济上不合算,擅自建成建筑面积1000m2的写字楼。现该公司欲以该新建写字楼投资
下列关于石灰的技术性质的说法,错误的是()。
下列比率或指标越高,表示商业银行的流动性风险越高的是()。
注册会计师应当从()方面了解被审计单位对会计政策的选择和运用。
儿童身心发展差异性产生的自然物质基础是()。
“言必信、行必果”
设函数f(χ)=则在点χ=0处f(χ)().
最新回复
(
0
)