首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
求线性方程组的通解,并求满足条件x12=x22的所有解.
求线性方程组的通解,并求满足条件x12=x22的所有解.
admin
2018-06-14
63
问题
求线性方程组
的通解,并求满足条件x
1
2
=x
2
2
的所有解.
选项
答案
对增广矩阵作初等行变换,有 [*] 方程组的解:令x
3
=0,x
4
=0得x
2
=1,x
1
=2.即α=(2,1,0,0)
T
. 导出组的解: 令x
3
=1,x
4
=0得x
2
=3,x
1
=1.即η
1
=(1,3,1,0)
T
; 令x
3
=0,x
4
=1得x
2
=0,x
1
=一1.即η
2
=(一1,0,0,1)
T
. 因此方程组的通解是:(2,1,0,0)T+k
1
(1,3,1,O)T+k
2
(一1,0,0,1)
T
. 而其中满足x
1
2
=x
2
2
的解,即(2+k
1
—k
2
)
2
=(1+3k
1
)
2
. 那么 2+k
1
—k
2
=1+3k
1
或2+k
1
一k
2
=一(1+3k
1
), 即 k
2
=1—2k
1
或k
2
=3+4k
1
. 所以(1,l,0,1)
T
+k(3,3,1,一2)
T
和(一1,1,0,3)
T
+k(一3,3,1,4)
T
为满足x
1
2
=x
2
2
的所有解.
解析
转载请注明原文地址:https://kaotiyun.com/show/P1W4777K
0
考研数学三
相关试题推荐
设函数f(x)在区间[0,3]上连续,在(0,3)内可导,且f(0)+f(1)+f(2)=3,f(3)=1.证明:存在ξ∈(0,3),使得f’(ξ)=0.
微分方程y"+4y=4x一8的通解为________.
微分方程y’+ytanx=cosx的通解为________.
设f(x)在区间[0,1]上可积,当0≤x<y≤1时,|f(x)一f(y)|≤|arctanx一arctany|,又f(1)=0,证明:|∫01f(x)dx|≤.
求下列极限:
判断级数的敛散性,若收敛是绝对收敛还是条件收敛?
已知n元齐次线性方程组A1x=0的解全是A2x=0的解,证明A2的行向量可以由A1的行向量线性表出.若线性方程组(Ⅰ)A1x=b1和(Ⅱ)A2x=b2都有解,且(Ⅰ)的解全是(Ⅱ)的解,则(A2,b2)的行向量组可以由(A1,b1)的行向量组线
设A是m×n实矩阵,AT是A的转置矩阵,证明方程组(Ⅰ):Ax=0和(Ⅱ):ATAx=0是同解方程组.
设n阶矩阵A的伴随矩阵A*≠0,若ξ1,ξ2,ξ3,ξ4是非齐次方程组Ax=b的互不相等的解,则对应的齐次方程组Ax=0的基础解系
设A是n阶矩阵,若存在正整数k,使线性方程组Akx=0有解向量α,且Ak-1α≠0.证明:向量组α,Aα,…,Ak-1α是线性无关的.
随机试题
创伤后,角膜各层中再生能力最强的是
中风的发病好发年龄为()
女,29岁。上腹隐痛3年余,近半年来厌食,消瘦乏力,先后三次胃镜检查,均示胃体部大弯侧黏膜苍白,活检黏膜为中度不典型增生,对该患者的最佳治疗方法是
A.黄酮哌酯B.氟他胺C.特拉唑嗪D.非那雄胺E.尼尔雌醇属于雄激素受体阻断剂,使增生的前列腺体积缩小的药品是()。
从所给的四个选项中,选择最合适的一个填入问号处,使之呈现一定的规律性:
期货公司风险监管指标不符合规定标准的,中国证监会派出机构应当在2个工作日内对公司()。
下列选项中采无过错责任的是()
HowshouldarouterthatisbeingusedinaFrameRelaynetworkbeconfiguredtoavoidsplithorizonissuesfrompreventingrout
GrandCanyonHowwastheGrandCanyonformed?Thetruthisthatnooneknowsforsurethoughtherearesomeprettygoodguesses,
AccordingtoPrimeMinisterWenJiabao,whatwillChinado?
最新回复
(
0
)