首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知矩阵A=[α1,α2,α3,α4],α1,α2,α3,α4均为4维列向量,其中α2,α3,α4线性无关,α1= 2α2一α3.如果β=α1+α2+α3+α4,求线性方程组Ax=β的通解.
已知矩阵A=[α1,α2,α3,α4],α1,α2,α3,α4均为4维列向量,其中α2,α3,α4线性无关,α1= 2α2一α3.如果β=α1+α2+α3+α4,求线性方程组Ax=β的通解.
admin
2021-01-19
76
问题
已知矩阵A=[α
1
,α
2
,α
3
,α
4
],α
1
,α
2
,α
3
,α
4
均为4维列向量,其中α
2
,α
3
,α
4
线性无关,α
1
= 2α
2
一α
3
.如果β=α
1
+α
2
+α
3
+α
4
,求线性方程组Ax=β的通解.
选项
答案
令[*],则由Ax=[α
1
,α
2
,α
3
,α
4
][*] 得 x
1
α
1
+x
2
α
2
+x
3
α
3
+x
4
α
4
=α
1
+α
2
+α
3
+α
4
将α
1
=2α
2
一α
3
代入上式,整理后得 (2x
1
+x
2
一3)α
2
+(一x
1
+x
3
)α
3
+(x
4
一1)α
4
=0 由α
2
,α
3
,α
4
线性无关,得 [*] 解此方程组,得 [*] 其中k为任意常数. 由α
2
,α
3
,α
4
线性无关和α
1
=2α
2
一α
3
+0α
4
,知矩阵A的秩为3,[*]齐次线性方程组Ax=0的基础解系所含向量个数为4一3=1.于是由 α
1
一 2α
2
+α
3
+0α
4
=0 即[α
1
,α
2
,α
3
,α
4
][*] 知[1,一2,1,0]
T
为齐次线性方程组Ax=0的一个解,所以其通解为 [*] k为任意常数. 再由 β= α
1
+α
2
+α
3
+α
4
=[α
1
,α
2
,α
3
,α
4
][*] 知[1,1,1,1]
T
为非齐次线性方程组Ax=β的一个特解.于是Ax=β的通解为x=[1,1,1,1]
T
+k[1,一2,1,0]
T
,其中k为任意常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/P384777K
0
考研数学二
相关试题推荐
设a>0,函数f(x)在[0,+∞)上连续有界,证明:微分方程y’+ay=f(x)的解在[0,+∞)上有界.
由分部积分法可知[*]又因为f(1)=0,f’(x)=[*]故[*]
设函数f(x)在x=2的某邻域内可导,且f’(x)=ef(x),f(2)=1,计算f(n)(2).
设V是向量组α1=(1,1,2,3)T,α2=(一1,1,4,一1)T,α3=(5,一1,一8,9)T所生成的向量空间,求V的维数和它的一个标准正交基.
估计下列积分值:
计算行列式=_______.
设f=x12+x22+5x32+2a1x2—2x1x3+4x2x3为正定二次型,则未知系数a的范围是__________。
微分方程满足初值条件y(0)=0,y’(0)=的特解是______.
设则当n→∞时,数列yn[].
随机试题
评估人员通过量化各种政策或行政方案的总成本和总效果来对它们进行对比从而提出建议的评估方法是【】
下列哪种疾病与输血无关?
A.牛肉膏蛋白胨B.煌绿、胆盐、硫代硫酸钠、枸橼酸盐C.乳糖D.胆盐E.中性红SS琼脂培养基是选择性很强的培养基,成分较多,其抑制剂为
下列项目中,能同时影响资产和负债发生变化的是()。
下列关于客户理财需要和目标分析的说法中,正确的是()。
()是发达国家企业实现技术国际化的最常用办法。
里坊制源于出现在秦朝的闾里制,并且继承了它的管理办法。()
马克思说:“一切商品对它们的所有者是非使用价值,对它们的非所有者是使用价值”。这句话的含义是
当各项目小组成员对职能经理和项目经理双重负责的时候,项目团队建设经常会显得比较复杂。对这种双重负责关系的有效管理通常是(45)的职责。
TheCarnegieFoundationreportsaysthatmanycollegeshavetriedtobe"allthingstoallpeople".Indoingso,theyhaveincre
最新回复
(
0
)