首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设a>0,函数f(x)在[0,+∞)上连续有界,证明:微分方程y’+ay=f(x)的解在[0,+∞)上有界.
设a>0,函数f(x)在[0,+∞)上连续有界,证明:微分方程y’+ay=f(x)的解在[0,+∞)上有界.
admin
2019-06-28
60
问题
设a>0,函数f(x)在[0,+∞)上连续有界,证明:微分方程y’+ay=f(x)的解在[0,+∞)上有界.
选项
答案
原方程的通解为 y(x)=e
一ax
[C+∫
0
x
f(t)a
at
dt], 设f(x)在[0,+∞)上的上界为M,即|f(x)|≤M,则当x≥0时,有 |y(x)|=|e
一ax
[C+∫
0
x
f(t)dt]| ≤|Ce
一ax
|+e
一ax
|∫
0
x
f(t)e
at
dt| ≤|C|+Me
一ax
∫
0
x
e
at
dt [*] 即y(x)在[0,+∞)上有界.
解析
转载请注明原文地址:https://kaotiyun.com/show/NaV4777K
0
考研数学二
相关试题推荐
已知y1(x)和y2(x)是方程y’+p(x)y=0的两个不同的特解,则方程的通解为()
设函数f(x)=在x=0处连续,则a=___________。
设f(x)=2x+3x一2,则当x→0时()
设f(x)在[a,b]上有连续的导数,证明+∫ab|f’(x)|dx。
设f(x)在[a,b]上有二阶连续导数,证明∫abf(x)dx=(b-a)[f(a)+f(b)]+∫abf’’(x)(x-a)(x-b)dx。
设y=y(x)是区间(一π,π)内过的光滑曲线,当一π<x<0时,曲线上任一点处的法线都过原点,当0≤x<π时,函数y(x)满足y’’+y+x=0。求函数y(x)的表达式。
设x为三维单位列向量,E为三阶单位矩阵,则矩阵E—xxT的秩为_________。
设f(x,y)在点(0,0)的邻域内连续,F(t)==_______
A、 B、 C、 D、 C积分区域D可表示为D={(x,y)|一1≤x≤0,一x≤y≤2一x2}∪{(x,y)|0≤x≤1,x≤y≤2一x2}.D关于y轴对称,而xy关于x为奇函数,因此
设F(x)=∫0x(x2-t2)f(t)dt,其中f’(x)在x=0处连续,且当x→0时,F’(x)~x2,则f’(0)=______.
随机试题
电压型变频器与电流型变频器的主电路大体上可分为两类,各有什么不同?
A.NK细胞B.B细胞C.CD8+T细胞D.CD4+T细胞E.树突细胞能直接杀伤肿瘤细胞的是
A.饭前服用B.上午7~8时一次服用C.睡前服用D.饭后服用E.清晨起床后服用根据时辰药理学,糖皮质激素的适宜服药时间是()。
按照《劳动合同法》的规定,下列关于劳务派遣的表述中,正确的是()。
下列属于注册会计师及其所在的会计师事务所的业务范围有()。
下列属于体能主导类的项目是()。
引起黄土高原水土流失的最主要因素是()。
当x→0时,(-1)ln(1+x2)是比xkarctanx高阶的无穷小,而xkarctanx是比(1-)∫0xdt高阶的无穷小,则k的取值范围是()。
OptimationLtd.,apolymerpackagingandconvertingspecialist,isonesmallcompanythatissuffering.Itshighlyspecialisede
WhatisitthatmadeSteveJobsspecial?Whatcanwelearnfromthisonce-in-a-lifetimeentrepreneur?SteveJobswasavisi
最新回复
(
0
)