首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶实对称矩阵,P是n阶可逆矩阵,已知n维列向量α是A的属于特征值λ的特征向量,则矩阵(P一1AP)T属于特征值λ的特征向量是( )
设A是n阶实对称矩阵,P是n阶可逆矩阵,已知n维列向量α是A的属于特征值λ的特征向量,则矩阵(P一1AP)T属于特征值λ的特征向量是( )
admin
2016-03-05
62
问题
设A是n阶实对称矩阵,P是n阶可逆矩阵,已知n维列向量α是A的属于特征值λ的特征向量,则矩阵(P
一1
AP)
T
属于特征值λ的特征向量是( )
选项
A、P
一1
α
B、P
T
α.
C、Pα.
D、(P
一1
)
T
α
答案
B
解析
设β是矩阵(P
一1
AP)
一1
属于λ的特征向量,并考虑到A为实对称矩阵A
T
=A,有(P
一1
AP)
T
β=λβ,即P
T
A(P
一1
)β=λβ.把四个选项中的向量逐一代入上式替换β,同时考虑到Aα=λα,可得选项B正确,即左端=P
T
A(P
一1
)
T
(P
T
)=P
T
λα=P
T
λα=λP
T
α=右端.所以应选B.
转载请注明原文地址:https://kaotiyun.com/show/P434777K
0
考研数学二
相关试题推荐
利用变换x=-㏑t将微分方程d2y/dx2+dy/dx+e-2xy-e-3x化简为y关于t的微分方程,并求原微分方程的通解y(x);
求函数f(x)=的间断点,并判断它们的类型.
下列命题(1)设函数g(x)在x=x0处连续,f(u)在u=u0=g(x0)处连续,则f(g(x))在x=x0处连续;(2)设函数g(x)在x=x0处连续,f(u)在u=u0=g(x0)处不连续,则f(g(x))在x=x0处不连续;
若f(x),g(x)在[a,b]上连续,证明:[∫abf(x)dx]2≤(b-a)∫abf2(x)dx.
设函数f(x)在[a,b]上二阶可导,f’(a)=f’(b)=0,证明:存在ξ∈(a,b),使得|f”(ξ)|≥|f(b)-f(a)|.
设f(x)在[0,2]上的二阶导数连续,在(0,2)内取得最小值,且|f”(x)|≤a,证明:|f’(0)|+|f’(2)|≤2a.
设则当x→0时,两个无穷小的关系是().
设随机变量X服从参数为2的指数分布,证明:Y=1-e-2x在区间(0,1)上服从均匀分布.
当a取下列哪个值时,函数f(x)=2x3-9x2+12x-a恰有两个不同的零点________。
设n元线性方程组Ax=b,其中A=,x=(x1,…,xn)T,b=(1,0,…,0)T.(Ⅰ)证明行列式|A|=(n+1)an;(Ⅱ)a为何值时,方程组有唯一解?求x1;(Ⅲ)a为何值时,方程组有无穷多解?求通解.
随机试题
关于滴虫的生物学特性,下列哪项描述不正确
糖尿病酮症酸中毒的临床表现包括
妊娠合并病毒肝炎,妊娠及分娩期的正确处理是:
统计工作的步骤正确的是
地图符号按比例尺关系可分为()。
一般情况下,定价目标分为()。
清洁生产的目标包括()。
(2013年)2011年2月3日,A公司为向B公司支付货款,签发并承兑了一张以B公司为收款人的商业承兑汇票,到期日为2011年8月3日。B公司拟向C公司购买钢材,遂在该汇票背书栏中作为背书人签章,并记载C公司为被背书人,由本公司业务人员携至验货现场。由于发
国家工作人员,利用职务上的便利,索取他人财物,为他人牟取利益的行为,构成受贿罪。()
WhenIcameintotheroom,thekids(draw)______onthewall.
最新回复
(
0
)