首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
玻璃杯成箱出售,每箱20只.设各箱含0,1,2只残次品的概率分别为0.8,0.1和0.1.一顾客欲购买一箱玻璃杯,由售货员任取一箱,而顾客开箱随机地察看4只:若无残次品,则买下该箱玻璃杯,否则退回,试求: (1)顾客买此箱玻璃杯的概率; (
玻璃杯成箱出售,每箱20只.设各箱含0,1,2只残次品的概率分别为0.8,0.1和0.1.一顾客欲购买一箱玻璃杯,由售货员任取一箱,而顾客开箱随机地察看4只:若无残次品,则买下该箱玻璃杯,否则退回,试求: (1)顾客买此箱玻璃杯的概率; (
admin
2021-01-25
60
问题
玻璃杯成箱出售,每箱20只.设各箱含0,1,2只残次品的概率分别为0.8,0.1和0.1.一顾客欲购买一箱玻璃杯,由售货员任取一箱,而顾客开箱随机地察看4只:若无残次品,则买下该箱玻璃杯,否则退回,试求:
(1)顾客买此箱玻璃杯的概率;
(2)在顾客买的此箱玻璃杯中,确实没有残次品的概率.
选项
答案
记B=(顾客买下此箱玻璃杯),A
i
={售货员取的是含i只残次品的一箱玻璃杯},i=0,1,2. 由题意知:A
0
、A
1
、A
2
构成互不相容完备事件组,且 P(A
0
)=0.8,P(A
1
)=P(A
2
)=0.1,P(B|A
0
)=1 [*] (1)由全概率公式得: P(B)=[*]P(A)p(B|A
i
)=08×1+0.1×[*]=0.943157894 (2)P(A
0
|B)=[*]=0.848214286
解析
转载请注明原文地址:https://kaotiyun.com/show/P5x4777K
0
考研数学三
相关试题推荐
假设随机变量X的绝对值不大于1,P(X=-1)-1/8,P(X=1)=1/4.在事件{|X|<1}出现的条件下,X在(-1,1)内任一子区间上取值的条件概率与该子区间长度成正比,求X的分布函数F(x)=P(X≤x),并画出F(x)的图形.
一汽车沿一街道行驶,需要通过三个均设有红绿灯的路口.每个信号灯为红或绿与其他信号灯为红或绿相互独立,且红绿两种信号显示的时间相等.以X表示该汽车首次遇到红灯前已通过的路口个数,求X的概率分布.
随机地向半圆(a为正常数)内掷一点,点落在半圆内任何区域内的概率与区域的面积成正比,则原点和该点的连线与x轴的夹角小于π/4的概率为__________.
设F1(x)与F2(x)分别为随机变量X1与X2的分布函数,为使F(x)=aF1(x)=bF2(x)是某一随机变量的分布函数,在下列给定的各组值中应取().
求幂级数的和函数.
设三阶实对称矩阵A的特征值是1,2,3,矩阵A的属于特征值1,2的特征向量分别为α1=[-1,-1,1]T,α2=[1,-2,-1]T.求矩阵A.
某保险公司对多年来的统计资料表明,在索赔户中被盗索赔户占20%,以X表示在随意抽查的100个索赔户中因被盗向保险公司索赔的户数.[附表]设Φ(x)是标准正态分布函数.利用棣莫弗一拉普拉斯中心极限定理,求被盗索赔户不少
求函数f(x,y)=xy(a一x—y)的极值.
(14年)设A=,E为3阶单位矩阵.(Ⅰ)求方程组Aχ=0的一个基础解系;(Ⅱ)求满足AB=E的所有矩阵B.
设某工厂生产甲、乙两种产品,当这两种产品的产量分别为q1(吨)与q2(吨)时,总收入函数为R(q1,q2)=15q1+34q2—一一2q1q2—36(万元),设生产1吨甲产品要支付排污费1万元,生产1吨乙产品要支付排污费2万元.(Ⅰ)如不限制排污
随机试题
呼吸性酸中毒最先解决的问题是
患者颈部淋巴结肿大时,下列可能性最小的疾病是
下列哪项不符合胸壁疾患所致胸痛的特点是
荷载的类型中,可变作用是指在设计基准期内,其值随时间变化。以下属于可变作用的有()。
所谓职业道德,就是同人们的职业活动紧密联系的符合职业特点所要求的()。
根据下列材料回答问题。2008--2011年,低收入户人均纯收入与上年相比增长最快的年份是()。
设a=2,b=3,c=4,d=5,表达式Nota
Mostofthepioneersoflow-temperaturephysicsexpectedgasestoliquefy,butnoneofthempredictedsuperconductivity.Thisph
PassageFourWhatdoestheword"apprehensively"probablymeaninPara.10?
A、ShecouldchatwithDr.Lee.B、ShefoundDr.Leewassofamous.C、Dr.Leeledsuchasimplelife.D、Dr.Leewassoeasytoget
最新回复
(
0
)