首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(1)由方程sinxy+ln(y-x)=x确定函数y=y(x),求. (2)设函数y=y(x)由2xy=x+y确定,求dy|x=0. (3)设y=y(x)由ln(x2+y)=x3y+sinx确定,求. (4)设由e-y+x(y-x)=1+x确定y=y(x)
(1)由方程sinxy+ln(y-x)=x确定函数y=y(x),求. (2)设函数y=y(x)由2xy=x+y确定,求dy|x=0. (3)设y=y(x)由ln(x2+y)=x3y+sinx确定,求. (4)设由e-y+x(y-x)=1+x确定y=y(x)
admin
2017-12-31
38
问题
(1)由方程sinxy+ln(y-x)=x确定函数y=y(x),求
.
(2)设函数y=y(x)由2
xy
=x+y确定,求dy|
x=0
.
(3)设y=y(x)由ln(x
2
+y)=x
3
y+sinx确定,求
.
(4)设由e
-y
+x(y-x)=1+x确定y=y(x),求y’’(0).
(5)设y=y(x)由x-∫
1
x+y
e
-t
2
dt=0确定,求
.
选项
答案
(1)将x=0代入sinxy+ln(y-x)=x得y=1, 对sinxy+ln(y-x)=x两边关于=求导得 cosxy.(y+[*]=1, 将x=0,y=1代入得[*]=1. (2)当x=0时,y=1, 对2
xy
=x+y两边关于x求导,得2
xy
ln2(y+[*], 将x=0,y=1代入得[*]=ln2-1,故dy|
x=0
=(ln2-1)dx. (3)x=0代入ln(x
2
+y)=x
3
y+sinx得y=1, 对ln(x
2
+y)=x
3
y+sinx两边关于x求导,得[*]=3x
2
y+x
3
y’+cosx, 将x=0,y=1代入得[*]=1. (4)x=0时,y=0. 对e
y
+x(y-x)=1+x两边关于x求导得 -e
-y
y’+y-x+x(y’-1)=1,将x=0,y=0代入得y’(0)=-1; 对-e
-y
y’+y-x+x(y’-1)=1两边关于x求导,得 e
-y
(y’)
2
-e
-y
y’’+2(y’-1)+xy’’=0,将x=0,y=0,y’(0)=-1代入,得y’’(0)=-3. (5)x=0时,y=1. 对x-∫
1
x+y
e
-t
2
dt=0两边关于x求导得1-[*]=0, 将x=0,y=1,代入得[*]=e-1.
解析
转载请注明原文地址:https://kaotiyun.com/show/PPX4777K
0
考研数学三
相关试题推荐
求极限
求极限
若是(-∞,+∞)上的连续函数,则a=________.
设X关于Y的条件概率密度为求
在区间(0,1)中随机地取两个数,则事件“两数之和小于6/5”的概率为________.
设A为3阶矩阵,α1,α2为A的分别属于特征值一1,1的特征向量,向量α3满足Aα3=α2+α3。证明α1,α2,α3线性无关;
设矩阵且|A|=一1,又设A的伴随矩阵A*有特征值λ0,属于λ0的特征向量为α=(一1,一1,1)T。求a,b,c及λ0的值。
设矩阵的特征方程有一个二重根,求a的值,并讨论A是否可相似对角化。
一生产线生产的产品成箱包装,每箱的重量是随机的。假设每箱平均重50千克,标准差为5千克。若用最大载重量为5吨的汽车承运,试利用中心极限定理说明每辆车最多可以装多少箱,才能保障不超载的概率大于0.977(Ф(2)一0.977,其中Ф(x)是标准正态分布函数。
(Ⅰ)用等价、同阶、低阶、高阶回答:设f(x)在x0可微,f’(x0)≠0,则当△x→0时f(x)在x=x0处的微分与△x比较是()无穷小,△y=f(x0+△x)-f(x0)与△x比较是()无穷小,与△x比较是()无穷小(Ⅱ)设函
随机试题
A.生地黄B.香附C.川楝子D.熟地E.柴胡(1999年第91,92题)越鞠丸的君药是()
组织间插植巴黎系统中线源活性长度AL应比靶区长度L长
男,30岁,受凉后高热、寒战、咳嗽,咳痰3天。体检:T38.5℃,右上肺语颤增强,呼吸音增强,有湿哕音。WBC18×109/L,N90%,L10%。最可能诊断为
某工程项目总价值1000万元,合同工期为18个月,现承包人因建设条件发生变化需增加额外工程费用50万元,则承包方提出工期索赔为()个月。
甲建设单位接到乙建设工程勘察单位送来的建设工程勘察文件,并委托丙设计单位做工程项目设计工作。设计中采用了一项新工艺,丙单位对此新工艺并未在设计中提出保障施工人员安全事故的措施建议。
一方以欺诈、胁迫的手段,使对方在违背真实意思的情况下订立的合同,为无效合同。()
在开始时寸步不让,态度十分强硬;到了最后时刻,则一次让步到位,促成和局,这种策略是()。
西周时期的借贷契约称为()。
设f(x)在[-a,a](a>0)上有四阶连续的导数,存在.写出f(x)的带拉格朗日余项的马克劳林公式;
一间宿舍可住多个学生,则实体宿舍和学生之间的联系是()。
最新回复
(
0
)