首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设齐次线性方程组 其中A≠0,b≠0,n≥2.试讨论a,b为何值时,方程组仅有零解,有无穷多解?当有无穷多解时,求出其全部解,并用基础解系表示全部解.
设齐次线性方程组 其中A≠0,b≠0,n≥2.试讨论a,b为何值时,方程组仅有零解,有无穷多解?当有无穷多解时,求出其全部解,并用基础解系表示全部解.
admin
2016-10-27
33
问题
设齐次线性方程组
其中A≠0,b≠0,n≥2.试讨论a,b为何值时,方程组仅有零解,有无穷多解?当有无穷多解时,求出其全部解,并用基础解系表示全部解.
选项
答案
对系数矩阵作初等行变换,把第1行的一1倍分别加至第2行到第n行,有 [*] (Ⅰ)如果a=b,方程组的同解方程组是x
1
+x
2
+…+x
n
=0. 由于n一r(A)=n一1,取自由变量为x
2
,x
3
,…,x
n
,得到基础解系为: α
1
=(一1,1,0,…,0)
T
,α
2
=(一1,0,1,…,0)
T
,…,α
n-1
=(一1,0,0,…,1)
T
. 方程组通解是:k
1
α
1
+k
2
α
2
+…+k
n-1
α
n-1
,其中k
1
,k
2
,…,k
n-1
为任意常数. (Ⅱ)如果a≠b,对系数矩阵作初等行变换,有 [*] 若a≠(1一n)b,则秩r(A)=n,此时齐次方程组只有零解. 若a=(1一n)b,则秩r(A)=n一1.取x
1
为自由变量,则基础解系为a=(1,1,…,1)
T
,于是方程组的通解是:kα,其中k为任意常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/PTu4777K
0
考研数学一
相关试题推荐
[*]
设A是n阶可逆方阵,将A的第i行和第j行对换后得到的矩阵记为B.证明B可逆;
将函数f(x)=ln(1-x-2x2)展开成x的幂级数,并指出其收敛区间.
假设:(1)函数y=f(x)(0≤x<+∞)满足条件f(0)=0和0≤f(x)≤ex-1;(2)平行于y轴的动直线MN与曲线y=f(x)和y=ex-1分别相交于点P1和P2;(3)曲线y=f(x)、直线MN与x轴所围封闭图形的面积S恒等于线段P1P2的
用集合的描述法表示下列集合:(1)大于5的所有实数集合.(2)方程x2-7x+12=0的根的集合.(3)圆x2+y2=25内部(不包含圆周)一切点的集合.(4)抛物线y=x2与直线x-y=0交点的集合.
已知线性方程组(Ⅰ)a,b为何值时,方程组有解?(Ⅱ)方程组有解时,求出方程组的导出组的一个基础解系;(Ⅲ)方程组有解时,求出方程组的全部解.
某地抽样调查结果表明,考生的外语成绩(百分制)近似正态分布,平均成绩为72分,96分以上的占考生总数的2.3%,试求考生的外语成绩在60分到84分之间的概率,如下表:
幂级数的收敛区间为________.
(Ⅰ)因为[*]所以[*]单调减少,而a≥0,即[*]是单调减少有下界的数列,根据极限存在准则,[*](Ⅱ)由(Ⅰ)得0≤[*]对级数[*]因为[*]存在,所以级数[*]根据比较审敛法,级数
(2005年试题,一)设Ω是由锥面与半球面围成的空间区域,∑是Ω的整个边界的外侧,则
随机试题
将函数展开为x一1的幂级数,并指出收敛区间(不考虑端点).
矿山井巷工程的开拓方式分为()。
客户对交易结算报告的内容有异议的,应当在期货交易所规定的时间内向期货公司提出书面异议。()
要保持一国长期的经济增长,政府可以选择的经济政策包括()。[2003年真题]
投资者对某项资产合理要求的最低收益率,称为()。
资产负债表是根据()这一会计等式编制而成的。
在20世纪30年代,人们已经发现了一种有绿色和褐色纤维的棉花。但是,直到最近培育出此种棉花的长纤维品种后,它们才具备了机纺的条件,才具有了商业价值。由于此种棉花不需要染色,加工企业就省去了染色的开销,并且避免了由染色工艺流程带来的环境污染。从题干可以推出以
马克思认为,科学是“历史的有力杠杆”,是“最高意义上的革命力量”。这句话表明()
设f(x)二阶连续可导,f′(0)=0,且则().
ReadingPassage2hastenparagraphs,A-J.Whichparagraphsstatethefollowinginformation?WritetheappropriatelettersA
最新回复
(
0
)