首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设齐次线性方程组 其中A≠0,b≠0,n≥2.试讨论a,b为何值时,方程组仅有零解,有无穷多解?当有无穷多解时,求出其全部解,并用基础解系表示全部解.
设齐次线性方程组 其中A≠0,b≠0,n≥2.试讨论a,b为何值时,方程组仅有零解,有无穷多解?当有无穷多解时,求出其全部解,并用基础解系表示全部解.
admin
2016-10-27
74
问题
设齐次线性方程组
其中A≠0,b≠0,n≥2.试讨论a,b为何值时,方程组仅有零解,有无穷多解?当有无穷多解时,求出其全部解,并用基础解系表示全部解.
选项
答案
对系数矩阵作初等行变换,把第1行的一1倍分别加至第2行到第n行,有 [*] (Ⅰ)如果a=b,方程组的同解方程组是x
1
+x
2
+…+x
n
=0. 由于n一r(A)=n一1,取自由变量为x
2
,x
3
,…,x
n
,得到基础解系为: α
1
=(一1,1,0,…,0)
T
,α
2
=(一1,0,1,…,0)
T
,…,α
n-1
=(一1,0,0,…,1)
T
. 方程组通解是:k
1
α
1
+k
2
α
2
+…+k
n-1
α
n-1
,其中k
1
,k
2
,…,k
n-1
为任意常数. (Ⅱ)如果a≠b,对系数矩阵作初等行变换,有 [*] 若a≠(1一n)b,则秩r(A)=n,此时齐次方程组只有零解. 若a=(1一n)b,则秩r(A)=n一1.取x
1
为自由变量,则基础解系为a=(1,1,…,1)
T
,于是方程组的通解是:kα,其中k为任意常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/PTu4777K
0
考研数学一
相关试题推荐
A、 B、 C、 D、 C
[*]
证明下列极限都为0;
设A=E-ξξT,其中层为n阶单位矩阵,ξ是n维非零列向量,ξT是ξ的转置.证明:A2=A的充要条件是ξTξ=1;
设矩阵,矩阵B满足ABA*=2BA*+E,其中A*为A的伴随矩阵,E是单位矩阵,则丨B丨=__________.
设二二次型f(x1,x2,x3)=XTAX=ax12+2x22+(﹣2x32)+2bx1x3(b>0),其中二次矩阵A的特征值之和为1,特征值之积为﹣(I)求a,b的值;(II)利用正交变换将二次型f化为标准形,并写出所用的正交变换对应的
(Ⅰ)因为[*]所以[*]单调减少,而a≥0,即[*]是单调减少有下界的数列,根据极限存在准则,[*](Ⅱ)由(Ⅰ)得0≤[*]对级数[*]因为[*]存在,所以级数[*]根据比较审敛法,级数
已知y(x)=xe-x+e—h,y2*(x)=xe-x+xe-2x,y3*(x)=xe-x+e-2x+xe-2x是某二阶线性常系数微分方程y’’+py’+qy=f(x)的三个特解.求这个方程和它的通解;
某保险公司接受了10000辆电动自行车的保险,每辆车每年的保费为12元.若车丢失,则赔偿车主1000元.假设车的丢失率为0.006,对于此项业务,试利用中心极限定理,求保险公司:一年获利润不少于40000元的概率β;
(2009年)计算曲面积分其中∑是曲面2x2+2y2+z2=4的外侧。
随机试题
Windows7中,下列关于“任务栏”的叙述中,不正确的是________。
虽然说经营性养老机构的定价是放开的,政府不能够干预,但是,从保障购买者权益、稳定养老床位价格、规范市场秩序等角度来说,有关方面需要高度警惕这种销售床位的经营模式带来的种种问题。比方说,床位可以炒卖,这既有可能背离了养老机构床位的属性——把养老服务变成一种投
《出版物市场管理规定》所称展销,是指在固定场所或者以固定方式于一定时间内集中展览、销售、订购出版物。()
有多中心的起源最常见于吸烟者
参加执业医师资格考试,要求以师承方式学习传统医学满
患者,18岁。右颌下区肿痛7天,加剧3天,检查:体温39℃,一般情况差,右颌下皮肤红,皮温高,压痛明显,触有波动感,肿胀无明显界限。舌下肉阜无红肿,导管口无溢脓,右下第一磨牙残根,叩痛(++),X线片见根尖周X线透射区。最可能的诊断为
张某与李某作为发起人以募集方式设立甲股份有限公司,双方约定按2:1的比例承担公司设立失败的责任;后因创立大会决定不设立公司,甲公司未能成立。根据公司法律制度的规定,下列关于已缴股款的认股人请求返还股款的表述不正确的是()。
甲和内公司为乙公司的子公司,乙公司是内公司的唯一原料供应商,丁公司和丙公司生产同一种产品,则下列公司为关联企业的有( )。
组织机构中各个岗位功能的等级被称为()。
支配小汗腺的自主神经和其节后纤维末梢释放的递质分别是()。
最新回复
(
0
)